Measure of financial risk
Expected shortfall  (ES ) is a risk measure —a concept used in the field of financial risk  measurement to evaluate the market risk  or credit risk  of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst 
  
    
      
        q 
        % 
       
     
    {\displaystyle q\%} 
   
 value at risk  that is more sensitive to the shape of the tail of the loss distribution.
Expected shortfall is also called conditional value at risk  (CVaR ),[ 1] average value at risk  (AVaR ), expected tail loss  (ETL ), and superquantile .[ 2] 
ES estimates the risk of an investment in a conservative way, focusing on the less profitable outcomes. For high values of 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 discounted maximum loss , even for lower values of 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 [citation needed  
Expected shortfall is considered a more useful risk measure than VaR because it is a coherent  spectral measure  of financial portfolio risk. It is calculated for a given quantile -level 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 portfolio  value given that a loss is occurring at or below the 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
If 
  
    
      
        X 
        ∈ 
        
          L 
          
            p 
           
         
        ( 
        
          
            F 
           
         
        ) 
       
     
    {\displaystyle X\in L^{p}({\mathcal {F}})} 
   
 Lp  ) is the payoff of a portfolio at some future time and 
  
    
      
        0 
        < 
        α 
        < 
        1 
       
     
    {\displaystyle 0<\alpha <1} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        
          
            1 
            α 
           
         
        
          ∫ 
          
            0 
           
          
            α 
           
         
        
          VaR 
          
            γ 
           
         
         
        ( 
        X 
        ) 
        d 
        γ 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)={\frac {1}{\alpha }}\int _{0}^{\alpha }\operatorname {VaR} _{\gamma }(X)\,d\gamma } 
   
 where 
  
    
      
        
          VaR 
          
            γ 
           
         
       
     
    {\displaystyle \operatorname {VaR} _{\gamma }} 
   
 value at risk . This can be equivalently written as
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        
          
            1 
            α 
           
         
        
          ( 
          
            E 
             
            [ 
            X 
              
            
              1 
              
                { 
                X 
                ≤ 
                
                  x 
                  
                    α 
                   
                 
                } 
               
             
            ] 
            + 
            
              x 
              
                α 
               
             
            ( 
            α 
            − 
            P 
            [ 
            X 
            ≤ 
            
              x 
              
                α 
               
             
            ] 
            ) 
           
          ) 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-{\frac {1}{\alpha }}\left(\operatorname {E} [X\ 1_{\{X\leq x_{\alpha }\}}]+x_{\alpha }(\alpha -P[X\leq x_{\alpha }])\right)} 
   
 where 
  
    
      
        
          x 
          
            α 
           
         
        = 
        inf 
        { 
        x 
        ∈ 
        
          R 
         
        : 
        P 
        ( 
        X 
        ≤ 
        x 
        ) 
        ≥ 
        α 
        } 
        = 
        − 
        
          VaR 
          
            α 
           
         
         
        ( 
        X 
        ) 
       
     
    {\displaystyle x_{\alpha }=\inf\{x\in \mathbb {R} :P(X\leq x)\geq \alpha \}=-\operatorname {VaR} _{\alpha }(X)} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 quantile  and 
  
    
      
        
          1 
          
            A 
           
         
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                 
                
                  
                    if  
                   
                  x 
                  ∈ 
                  A 
                 
               
              
                
                  0 
                 
                
                  
                    else 
                   
                 
               
             
             
         
       
     
    {\displaystyle 1_{A}(x)={\begin{cases}1&{\text{if }}x\in A\\0&{\text{else}}\end{cases}}} 
   
 indicator function .[ 3] 
The dual representation is
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        
          inf 
          
            Q 
            ∈ 
            
              
                
                  Q 
                 
               
              
                α 
               
             
           
         
        
          E 
          
            Q 
           
         
        [ 
        X 
        ] 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=\inf _{Q\in {\mathcal {Q}}_{\alpha }}E^{Q}[X]} 
   
 where 
  
    
      
        
          
            
              Q 
             
           
          
            α 
           
         
       
     
    {\displaystyle {\mathcal {Q}}_{\alpha }} 
   
 probability measures  which are absolutely continuous  to the physical measure 
  
    
      
        P 
       
     
    {\displaystyle P} 
   
 
  
    
      
        
          
            
              d 
              Q 
             
            
              d 
              P 
             
           
         
        ≤ 
        
          α 
          
            − 
            1 
           
         
       
     
    {\displaystyle {\frac {dQ}{dP}}\leq \alpha ^{-1}} 
   
 almost surely .[ 4] 
  
    
      
        
          
            
              d 
              Q 
             
            
              d 
              P 
             
           
         
       
     
    {\displaystyle {\frac {dQ}{dP}}} 
   
 Radon–Nikodym derivative  of 
  
    
      
        Q 
       
     
    {\displaystyle Q} 
   
 
  
    
      
        P 
       
     
    {\displaystyle P} 
   
 
Expected shortfall can be generalized to a general class of coherent risk measures on 
  
    
      
        
          L 
          
            p 
           
         
       
     
    {\displaystyle L^{p}} 
   
 Lp space ) with a corresponding dual characterization in the corresponding 
  
    
      
        
          L 
          
            q 
           
         
       
     
    {\displaystyle L^{q}} 
   
 dual space . The domain can be extended for more general Orlicz Hearts.[ 5] 
If the underlying distribution for 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 tail conditional expectation  defined by 
  
    
      
        
          TCE 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        E 
        [ 
        − 
        X 
        ∣ 
        X 
        ≤ 
        − 
        
          VaR 
          
            α 
           
         
         
        ( 
        X 
        ) 
        ] 
       
     
    {\displaystyle \operatorname {TCE} _{\alpha }(X)=E[-X\mid X\leq -\operatorname {VaR} _{\alpha }(X)]} 
   
 [ 6] 
Informally, and non-rigorously, this equation amounts to saying "in case of losses so severe that they occur only alpha percent of the time, what is our average loss".
Expected shortfall can also be written as a distortion risk measure  given by the distortion function 
  
    
      
        g 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    
                      x 
                      
                        1 
                        − 
                        α 
                       
                     
                   
                 
                
                  
                    if  
                   
                  0 
                  ≤ 
                  x 
                  < 
                  1 
                  − 
                  α 
                  , 
                 
               
              
                
                  1 
                 
                
                  
                    if  
                   
                  1 
                  − 
                  α 
                  ≤ 
                  x 
                  ≤ 
                  1. 
                 
               
             
             
         
         
     
    {\displaystyle g(x)={\begin{cases}{\frac {x}{1-\alpha }}&{\text{if }}0\leq x<1-\alpha ,\\1&{\text{if }}1-\alpha \leq x\leq 1.\end{cases}}\quad } 
   
 [ 7] [ 8] Example 1. If we believe our average loss on the worst 5% of the possible outcomes for our portfolio is EUR 1000, then we could say our expected shortfall is EUR 1000 for the 5% tail.
Example 2. Consider a portfolio that will have the following possible values at the end of the period:
probability 
ending value  
10%
 
0
  
30%
 
80
  
40%
 
100
  
20%
 
150
  
Now assume that we paid 100 at the beginning of the period for this portfolio. Then the profit in each case is (ending value −100) or:
probability 
profit
  
10%
 
−100
  
30%
 
−20
  
40%
 
0
  
20%
 
50
  
From this table let us calculate the expected shortfall 
  
    
      
        
          ES 
          
            q 
           
         
       
     
    {\displaystyle \operatorname {ES} _{q}} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 expected shortfall 
  
    
      
        
          ES 
          
            q 
           
         
       
     
    {\displaystyle \operatorname {ES} _{q}} 
   
   
5%
 
100
  
10%
 
100
  
20%
 
60
  
30%
 
46.6 
  
40%
 
40
  
50%
 
32
  
60%
 
26.6 
  
80%
 
20
  
90%
 
12.2 
  
100%
 
6
  
To see how these values were calculated, consider the calculation of 
  
    
      
        
          ES 
          
            0.05 
           
         
       
     
    {\displaystyle \operatorname {ES} _{0.05}} 
   
 subset  of) row 1 in the profit table, which have a profit of −100 (total loss of the 100 invested). The expected profit for these cases is −100.
Now consider the calculation of 
  
    
      
        
          ES 
          
            0.20 
           
         
       
     
    {\displaystyle \operatorname {ES} _{0.20}} 
   
 
  
    
      
        
          
            
              
                
                  10 
                  100 
                 
               
              ( 
              − 
              100 
              ) 
              + 
              
                
                  10 
                  100 
                 
               
              ( 
              − 
              20 
              ) 
             
            
              20 
              100 
             
           
         
        = 
        − 
        60. 
       
     
    {\displaystyle {\frac {{\frac {10}{100}}(-100)+{\frac {10}{100}}(-20)}{\frac {20}{100}}}=-60.} 
   
 Similarly for any value of 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        − 
        
          ES 
          
            0.20 
           
         
       
     
    {\displaystyle -\operatorname {ES} _{0.20}} 
   
 
As a final example, calculate 
  
    
      
        − 
        
          ES 
          
            1 
           
         
       
     
    {\displaystyle -\operatorname {ES} _{1}} 
   
 
  
    
      
        0.1 
        ( 
        − 
        100 
        ) 
        + 
        0.3 
        ( 
        − 
        20 
        ) 
        + 
        0.4 
        ⋅ 
        0 
        + 
        0.2 
        ⋅ 
        50 
        = 
        − 
        6. 
         
     
    {\displaystyle 0.1(-100)+0.3(-20)+0.4\cdot 0+0.2\cdot 50=-6.\,} 
   
 The value at risk  (VaR) is given below for comparison.
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        
          VaR 
          
            q 
           
         
       
     
    {\displaystyle \operatorname {VaR} _{q}} 
   
  
  
    
      
        0 
        % 
        ≤ 
        q 
        < 
        10 
        % 
       
     
    {\displaystyle 0\%\leq q<10\%} 
   
 100
  
  
    
      
        10 
        % 
        ≤ 
        q 
        < 
        40 
        % 
       
     
    {\displaystyle 10\%\leq q<40\%} 
   
 20
  
  
    
      
        40 
        % 
        ≤ 
        q 
        < 
        80 
        % 
       
     
    {\displaystyle 40\%\leq q<80\%} 
   
 0
  
  
    
      
        80 
        % 
        ≤ 
        q 
        ≤ 
        100 
        % 
       
     
    {\displaystyle 80\%\leq q\leq 100\%} 
   
 -50
  
The expected shortfall 
  
    
      
        
          ES 
          
            q 
           
         
       
     
    {\displaystyle \operatorname {ES} _{q}} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
The 100%-quantile expected shortfall 
  
    
      
        
          ES 
          
            1 
           
         
       
     
    {\displaystyle \operatorname {ES} _{1}} 
   
 expected value  of the portfolio.
For a given portfolio, the expected shortfall 
  
    
      
        
          ES 
          
            q 
           
         
       
     
    {\displaystyle \operatorname {ES} _{q}} 
   
 
  
    
      
        
          VaR 
          
            q 
           
         
       
     
    {\displaystyle \operatorname {VaR} _{q}} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
Optimization of expected shortfall [ edit ] Expected shortfall, in its standard form, is known to lead to a generally non-convex optimization problem. However, it is possible to transform the problem into a linear program  and find the global solution.[ 9] mean-variance  portfolio optimization , which account for the higher moments (e.g., skewness and kurtosis ) of a return distribution.
Suppose that we want to minimize the expected shortfall of a portfolio. The key contribution of Rockafellar and Uryasev in their 2000 paper is to introduce the auxiliary function 
  
    
      
        
          F 
          
            α 
           
         
        ( 
        w 
        , 
        γ 
        ) 
       
     
    {\displaystyle F_{\alpha }(w,\gamma )} 
   
 
  
    
      
        
          F 
          
            α 
           
         
        ( 
        w 
        , 
        γ 
        ) 
        = 
        γ 
        + 
        
          
            1 
            
              1 
              − 
              α 
             
           
         
        
          ∫ 
          
            ℓ 
            ( 
            w 
            , 
            x 
            ) 
            ≥ 
            γ 
           
         
        
          
            [ 
            
              ℓ 
              ( 
              w 
              , 
              x 
              ) 
              − 
              γ 
             
            ] 
           
          
            + 
           
         
        p 
        ( 
        x 
        ) 
        d 
        x 
       
     
    {\displaystyle F_{\alpha }(w,\gamma )=\gamma +{1 \over {1-\alpha }}\int _{\ell (w,x)\geq \gamma }\left[\ell (w,x)-\gamma \right]_{+}p(x)\,dx} 
   
 
  
    
      
        γ 
        = 
        
          VaR 
          
            α 
           
         
         
        ( 
        X 
        ) 
       
     
    {\displaystyle \gamma =\operatorname {VaR} _{\alpha }(X)} 
   
 
  
    
      
        ℓ 
        ( 
        w 
        , 
        x 
        ) 
       
     
    {\displaystyle \ell (w,x)} 
   
 loss function  for a set of portfolio weights 
  
    
      
        w 
        ∈ 
        
          
            R 
           
          
            p 
           
         
       
     
    {\displaystyle w\in \mathbb {R} ^{p}} 
   
 
  
    
      
        
          F 
          
            α 
           
         
        ( 
        w 
        , 
        γ 
        ) 
       
     
    {\displaystyle F_{\alpha }(w,\gamma )} 
   
 convex  with respect to 
  
    
      
        γ 
       
     
    {\displaystyle \gamma } 
   
 
  
    
      
        J 
       
     
    {\displaystyle J} 
   
 copulas . With these simulations in hand, the auxiliary function may be approximated by:
  
    
      
        
          
            
              
                F 
                ~ 
               
             
           
          
            α 
           
         
        ( 
        w 
        , 
        γ 
        ) 
        = 
        γ 
        + 
        
          
            1 
            
              ( 
              1 
              − 
              α 
              ) 
              J 
             
           
         
        
          ∑ 
          
            j 
            = 
            1 
           
          
            J 
           
         
        [ 
        ℓ 
        ( 
        w 
        , 
        
          x 
          
            j 
           
         
        ) 
        − 
        γ 
        
          ] 
          
            + 
           
         
       
     
    {\displaystyle {\widetilde {F}}_{\alpha }(w,\gamma )=\gamma +{1 \over {(1-\alpha )J}}\sum _{j=1}^{J}[\ell (w,x_{j})-\gamma ]_{+}} 
   
 
  
    
      
        
          min 
          
            γ 
            , 
            z 
            , 
            w 
           
         
        γ 
        + 
        
          
            1 
            
              ( 
              1 
              − 
              α 
              ) 
              J 
             
           
         
        
          ∑ 
          
            j 
            = 
            1 
           
          
            J 
           
         
        
          z 
          
            j 
           
         
        , 
        
          s.t.  
         
        
          z 
          
            j 
           
         
        ≥ 
        ℓ 
        ( 
        w 
        , 
        
          x 
          
            j 
           
         
        ) 
        − 
        γ 
        , 
        
          z 
          
            j 
           
         
        ≥ 
        0 
       
     
    {\displaystyle \min _{\gamma ,z,w}\;\gamma +{1 \over {(1-\alpha )J}}\sum _{j=1}^{J}z_{j},\quad {\text{s.t. }}z_{j}\geq \ell (w,x_{j})-\gamma ,\;z_{j}\geq 0} 
   
 
  
    
      
        ℓ 
        ( 
        w 
        , 
        
          x 
          
            j 
           
         
        ) 
        = 
        − 
        
          w 
          
            T 
           
         
        
          x 
          
            j 
           
         
       
     
    {\displaystyle \ell (w,x_{j})=-w^{T}x_{j}} 
   
 
Closed-form formulas exist for calculating the expected shortfall when the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        L 
        = 
        − 
        X 
       
     
    {\displaystyle L=-X} 
   
 
  
    
      
        − 
        
          VaR 
          
            α 
           
         
         
        ( 
        X 
        ) 
       
     
    {\displaystyle -\operatorname {VaR} _{\alpha }(X)} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        E 
        [ 
        − 
        X 
        ∣ 
        X 
        ≤ 
        − 
        
          VaR 
          
            α 
           
         
         
        ( 
        X 
        ) 
        ] 
        = 
        − 
        
          
            1 
            α 
           
         
        
          ∫ 
          
            0 
           
          
            α 
           
         
        
          VaR 
          
            γ 
           
         
         
        ( 
        X 
        ) 
        d 
        γ 
        = 
        − 
        
          
            1 
            α 
           
         
        
          ∫ 
          
            − 
            ∞ 
           
          
            − 
            
              VaR 
              
                α 
               
             
             
            ( 
            X 
            ) 
           
         
        x 
        f 
        ( 
        x 
        ) 
        d 
        x 
        . 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=E[-X\mid X\leq -\operatorname {VaR} _{\alpha }(X)]=-{\frac {1}{\alpha }}\int _{0}^{\alpha }\operatorname {VaR} _{\gamma }(X)\,d\gamma =-{\frac {1}{\alpha }}\int _{-\infty }^{-\operatorname {VaR} _{\alpha }(X)}xf(x)\,dx.} 
   
 Typical values of 
  
    
      
        α 
       
     
    {\textstyle \alpha } 
   
 
For engineering or actuarial applications it is more common to consider the distribution of losses 
  
    
      
        L 
        = 
        − 
        X 
       
     
    {\displaystyle L=-X} 
   
 
  
    
      
        
          VaR 
          
            α 
           
         
         
        ( 
        L 
        ) 
       
     
    {\displaystyle \operatorname {VaR} _{\alpha }(L)} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        E 
         
        [ 
        L 
        ∣ 
        L 
        ≥ 
        
          VaR 
          
            α 
           
         
         
        ( 
        L 
        ) 
        ] 
        = 
        
          
            1 
            
              1 
              − 
              α 
             
           
         
        
          ∫ 
          
            α 
           
          
            1 
           
         
        
          VaR 
          
            γ 
           
         
         
        ( 
        L 
        ) 
        d 
        γ 
        = 
        
          
            1 
            
              1 
              − 
              α 
             
           
         
        
          ∫ 
          
            
              VaR 
              
                α 
               
             
             
            ( 
            L 
            ) 
           
          
            + 
            ∞ 
           
         
        y 
        f 
        ( 
        y 
        ) 
        d 
        y 
        . 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)=\operatorname {E} [L\mid L\geq \operatorname {VaR} _{\alpha }(L)]={\frac {1}{1-\alpha }}\int _{\alpha }^{1}\operatorname {VaR} _{\gamma }(L)\,d\gamma ={\frac {1}{1-\alpha }}\int _{\operatorname {VaR} _{\alpha }(L)}^{+\infty }yf(y)\,dy.} 
   
 Since some formulas below were derived for the left-tail case and some for the right-tail case, the following reconciliations can be useful:
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        
          
            1 
            α 
           
         
        E 
         
        [ 
        X 
        ] 
        + 
        
          
            
              1 
              − 
              α 
             
            α 
           
         
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        
           and  
         
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            1 
            
              1 
              − 
              α 
             
           
         
        E 
         
        [ 
        L 
        ] 
        + 
        
          
            α 
            
              1 
              − 
              α 
             
           
         
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        . 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-{\frac {1}{\alpha }}\operatorname {E} [X]+{\frac {1-\alpha }{\alpha }}\operatorname {ES} _{\alpha }(L){\text{ and }}\operatorname {ES} _{\alpha }(L)={\frac {1}{1-\alpha }}\operatorname {E} [L]+{\frac {\alpha }{1-\alpha }}\operatorname {ES} _{\alpha }(X).} 
   
 Normal distribution [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 normal (Gaussian) distribution  with p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              
                
                  2 
                  π 
                 
               
              σ 
             
           
         
        
          e 
          
            − 
            
              
                
                  ( 
                  x 
                  − 
                  μ 
                  
                    ) 
                    
                      2 
                     
                   
                 
                
                  2 
                  
                    σ 
                    
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle f(x)={\frac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        μ 
        + 
        σ 
        
          
            
              φ 
              ( 
              
                Φ 
                
                  − 
                  1 
                 
               
              ( 
              α 
              ) 
              ) 
             
            α 
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +\sigma {\frac {\varphi (\Phi ^{-1}(\alpha ))}{\alpha }}} 
   
 
  
    
      
        φ 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              2 
              π 
             
           
         
        
          e 
          
            − 
            
              
                
                  x 
                  
                    2 
                   
                 
                2 
               
             
           
         
       
     
    {\displaystyle \varphi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {x^{2}}{2}}}} 
   
 
  
    
      
        Φ 
        ( 
        x 
        ) 
       
     
    {\displaystyle \Phi (x)} 
   
 
  
    
      
        
          Φ 
          
            − 
            1 
           
         
        ( 
        α 
        ) 
       
     
    {\displaystyle \Phi ^{-1}(\alpha )} 
   
 [ 10] 
If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        μ 
        + 
        σ 
        
          
            
              φ 
              ( 
              
                Φ 
                
                  − 
                  1 
                 
               
              ( 
              α 
              ) 
              ) 
             
            
              1 
              − 
              α 
             
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)=\mu +\sigma {\frac {\varphi (\Phi ^{-1}(\alpha ))}{1-\alpha }}} 
   
 [ 11] 
[ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 Student's t-distribution  with  p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            
              Γ 
              
                ( 
                
                  
                    
                      ν 
                      + 
                      1 
                     
                    2 
                   
                 
                ) 
               
             
            
              Γ 
              
                ( 
                
                  
                    ν 
                    2 
                   
                 
                ) 
               
              
                
                  π 
                  ν 
                 
               
              σ 
             
           
         
        
          
            ( 
            
              1 
              + 
              
                
                  1 
                  ν 
                 
               
              
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        μ 
                       
                      σ 
                     
                   
                  ) 
                 
                
                  2 
                 
               
             
            ) 
           
          
            − 
            
              
                
                  ν 
                  + 
                  1 
                 
                2 
               
             
           
         
       
     
    {\displaystyle f(x)={\frac {\Gamma \left({\frac {\nu +1}{2}}\right)}{\Gamma \left({\frac {\nu }{2}}\right){\sqrt {\pi \nu }}\sigma }}\left(1+{\frac {1}{\nu }}\left({\frac {x-\mu }{\sigma }}\right)^{2}\right)^{-{\frac {\nu +1}{2}}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        μ 
        + 
        σ 
        
          
            
              ν 
              + 
              ( 
              
                
                  T 
                 
                
                  − 
                  1 
                 
               
              ( 
              α 
              ) 
              
                ) 
                
                  2 
                 
               
             
            
              ν 
              − 
              1 
             
           
         
        
          
            
              τ 
              ( 
              
                
                  T 
                 
                
                  − 
                  1 
                 
               
              ( 
              α 
              ) 
              ) 
             
            α 
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +\sigma {\frac {\nu +(\mathrm {T} ^{-1}(\alpha ))^{2}}{\nu -1}}{\frac {\tau (\mathrm {T} ^{-1}(\alpha ))}{\alpha }}} 
   
 
  
    
      
        τ 
        ( 
        x 
        ) 
        = 
        
          
            
              Γ 
              
                
                  ( 
                 
               
              
                
                  
                    ν 
                    + 
                    1 
                   
                  2 
                 
               
              
                
                  ) 
                 
               
             
            
              Γ 
              
                
                  ( 
                 
               
              
                
                  ν 
                  2 
                 
               
              
                
                  ) 
                 
               
              
                
                  π 
                  ν 
                 
               
             
           
         
        
          
            ( 
           
         
        1 
        + 
        
          
            
              x 
              
                2 
               
             
            ν 
           
         
        
          
            
              ) 
             
           
          
            − 
            
              
                
                  ν 
                  + 
                  1 
                 
                2 
               
             
           
         
       
     
    {\displaystyle \tau (x)={\frac {\Gamma {\bigl (}{\frac {\nu +1}{2}}{\bigr )}}{\Gamma {\bigl (}{\frac {\nu }{2}}{\bigr )}{\sqrt {\pi \nu }}}}{\Bigl (}1+{\frac {x^{2}}{\nu }}{\Bigr )}^{-{\frac {\nu +1}{2}}}} 
   
 
  
    
      
        
          T 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle \mathrm {T} (x)} 
   
 
  
    
      
        
          
            T 
           
          
            − 
            1 
           
         
        ( 
        α 
        ) 
       
     
    {\displaystyle \mathrm {T} ^{-1}(\alpha )} 
   
 [ 10] 
If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        μ 
        + 
        σ 
        
          
            
              ν 
              + 
              ( 
              
                
                  T 
                 
                
                  − 
                  1 
                 
               
              ( 
              α 
              ) 
              
                ) 
                
                  2 
                 
               
             
            
              ν 
              − 
              1 
             
           
         
        
          
            
              τ 
              ( 
              
                
                  T 
                 
                
                  − 
                  1 
                 
               
              ( 
              α 
              ) 
              ) 
             
            
              1 
              − 
              α 
             
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)=\mu +\sigma {\frac {\nu +(\mathrm {T} ^{-1}(\alpha ))^{2}}{\nu -1}}{\frac {\tau (\mathrm {T} ^{-1}(\alpha ))}{1-\alpha }}} 
   
 [ 11] 
Laplace distribution [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 Laplace distribution  with the p.d.f.
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              2 
              b 
             
           
         
        
          e 
          
            − 
            
              | 
             
            x 
            − 
            μ 
            
              | 
             
            
              / 
             
            b 
           
         
       
     
    {\displaystyle f(x)={\frac {1}{2b}}e^{-|x-\mu |/b}} 
   
 and the c.d.f.
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                  − 
                  
                    
                      1 
                      2 
                     
                   
                  
                    e 
                    
                      − 
                      ( 
                      x 
                      − 
                      μ 
                      ) 
                      
                        / 
                       
                      b 
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  ≥ 
                  μ 
                  , 
                 
               
              
                
                  
                    
                      1 
                      2 
                     
                   
                  
                    e 
                    
                      ( 
                      x 
                      − 
                      μ 
                      ) 
                      
                        / 
                       
                      b 
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  < 
                  μ 
                  . 
                 
               
             
             
         
       
     
    {\displaystyle F(x)={\begin{cases}1-{\frac {1}{2}}e^{-(x-\mu )/b}&{\text{if }}x\geq \mu ,\\[4pt]{\frac {1}{2}}e^{(x-\mu )/b}&{\text{if }}x<\mu .\end{cases}}} 
   
 then the expected shortfall is equal to 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        μ 
        + 
        b 
        ( 
        1 
        − 
        ln 
         
        2 
        α 
        ) 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +b(1-\ln 2\alpha )} 
   
 
  
    
      
        α 
        ≤ 
        0.5 
       
     
    {\displaystyle \alpha \leq 0.5} 
   
 [ 10] 
If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 [ 11] 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            { 
            
              
                
                  μ 
                  + 
                  b 
                  
                    
                      α 
                      
                        1 
                        − 
                        α 
                       
                     
                   
                  ( 
                  1 
                  − 
                  ln 
                   
                  2 
                  α 
                  ) 
                 
                
                  
                    if  
                   
                  α 
                  < 
                  0.5 
                  , 
                 
               
              
                
                  μ 
                  + 
                  b 
                  [ 
                  1 
                  − 
                  ln 
                   
                  ( 
                  2 
                  ( 
                  1 
                  − 
                  α 
                  ) 
                  ) 
                  ] 
                 
                
                  
                    if  
                   
                  α 
                  ≥ 
                  0.5. 
                 
               
             
             
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)={\begin{cases}\mu +b{\frac {\alpha }{1-\alpha }}(1-\ln 2\alpha )&{\text{if }}\alpha <0.5,\\[4pt]\mu +b[1-\ln(2(1-\alpha ))]&{\text{if }}\alpha \geq 0.5.\end{cases}}} 
   
 Logistic distribution [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 logistic distribution  with  p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            s 
           
         
        
          e 
          
            − 
            
              
                
                  x 
                  − 
                  μ 
                 
                s 
               
             
           
         
        
          
            ( 
            
              1 
              + 
              
                e 
                
                  − 
                  
                    
                      
                        x 
                        − 
                        μ 
                       
                      s 
                     
                   
                 
               
             
            ) 
           
          
            − 
            2 
           
         
       
     
    {\displaystyle f(x)={\frac {1}{s}}e^{-{\frac {x-\mu }{s}}}\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-2}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            ( 
            
              1 
              + 
              
                e 
                
                  − 
                  
                    
                      
                        x 
                        − 
                        μ 
                       
                      s 
                     
                   
                 
               
             
            ) 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle F(x)=\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-1}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        μ 
        + 
        s 
        ln 
         
        
          
            
              ( 
              1 
              − 
              α 
              
                ) 
                
                  1 
                  − 
                  
                    
                      1 
                      α 
                     
                   
                 
               
             
            α 
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +s\ln {\frac {(1-\alpha )^{1-{\frac {1}{\alpha }}}}{\alpha }}} 
   
 [ 10] 
If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 logistic distribution , the expected shortfall is equal to 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        μ 
        + 
        s 
        
          
            
              − 
              α 
              ln 
               
              α 
              − 
              ( 
              1 
              − 
              α 
              ) 
              ln 
               
              ( 
              1 
              − 
              α 
              ) 
             
            
              1 
              − 
              α 
             
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)=\mu +s{\frac {-\alpha \ln \alpha -(1-\alpha )\ln(1-\alpha )}{1-\alpha }}} 
   
 [ 11] 
Exponential distribution [ edit ] If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 exponential distribution  with p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  λ 
                  
                    e 
                    
                      − 
                      λ 
                      x 
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  ≥ 
                  0 
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    if  
                   
                  x 
                  < 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle f(x)={\begin{cases}\lambda e^{-\lambda x}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                  − 
                  
                    e 
                    
                      − 
                      λ 
                      x 
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  ≥ 
                  0 
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    if  
                   
                  x 
                  < 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle F(x)={\begin{cases}1-e^{-\lambda x}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            
              − 
              ln 
               
              ( 
              1 
              − 
              α 
              ) 
              + 
              1 
             
            λ 
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {-\ln(1-\alpha )+1}{\lambda }}} 
   
 [ 11] 
Pareto distribution [ edit ] If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 Pareto distribution  with p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    
                      
                        a 
                        
                          x 
                          
                            m 
                           
                          
                            a 
                           
                         
                       
                      
                        x 
                        
                          a 
                          + 
                          1 
                         
                       
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  ≥ 
                  
                    x 
                    
                      m 
                     
                   
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    if  
                   
                  x 
                  < 
                  
                    x 
                    
                      m 
                     
                   
                  . 
                 
               
             
             
         
       
     
    {\displaystyle f(x)={\begin{cases}{\frac {ax_{m}^{a}}{x^{a+1}}}&{\text{if }}x\geq x_{m},\\0&{\text{if }}x<x_{m}.\end{cases}}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                  − 
                  ( 
                  
                    x 
                    
                      m 
                     
                   
                  
                    / 
                   
                  x 
                  
                    ) 
                    
                      a 
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  ≥ 
                  
                    x 
                    
                      m 
                     
                   
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    if  
                   
                  x 
                  < 
                  
                    x 
                    
                      m 
                     
                   
                  . 
                 
               
             
             
         
       
     
    {\displaystyle F(x)={\begin{cases}1-(x_{m}/x)^{a}&{\text{if }}x\geq x_{m},\\0&{\text{if }}x<x_{m}.\end{cases}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            
              
                x 
                
                  m 
                 
               
              a 
             
            
              ( 
              1 
              − 
              α 
              
                ) 
                
                  1 
                  
                    / 
                   
                  a 
                 
               
              ( 
              a 
              − 
              1 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {x_{m}a}{(1-\alpha )^{1/a}(a-1)}}} 
   
 [ 11] 
[ edit ] If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 GPD  with p.d.f.
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            s 
           
         
        
          
            ( 
            
              1 
              + 
              
                
                  
                    ξ 
                    ( 
                    x 
                    − 
                    μ 
                    ) 
                   
                  s 
                 
               
             
            ) 
           
          
            
              ( 
              
                − 
                
                  
                    1 
                    ξ 
                   
                 
                − 
                1 
               
              ) 
             
           
         
       
     
    {\displaystyle f(x)={\frac {1}{s}}\left(1+{\frac {\xi (x-\mu )}{s}}\right)^{\left(-{\frac {1}{\xi }}-1\right)}} 
   
 and the c.d.f.
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                  − 
                  
                    
                      ( 
                      
                        1 
                        + 
                        
                          
                            
                              ξ 
                              ( 
                              x 
                              − 
                              μ 
                              ) 
                             
                            s 
                           
                         
                       
                      ) 
                     
                    
                      − 
                      1 
                      
                        / 
                       
                      ξ 
                     
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  1 
                  − 
                  exp 
                   
                  
                    ( 
                    
                      − 
                      
                        
                          
                            x 
                            − 
                            μ 
                           
                          s 
                         
                       
                     
                    ) 
                   
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle F(x)={\begin{cases}1-\left(1+{\frac {\xi (x-\mu )}{s}}\right)^{-1/\xi }&{\text{if }}\xi \neq 0,\\1-\exp \left(-{\frac {x-\mu }{s}}\right)&{\text{if }}\xi =0.\end{cases}}} 
   
 then the expected shortfall is equal to
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            { 
            
              
                
                  μ 
                  + 
                  s 
                  
                    [ 
                    
                      
                        
                          
                            ( 
                            1 
                            − 
                            α 
                            
                              ) 
                              
                                − 
                                ξ 
                               
                             
                           
                          
                            1 
                            − 
                            ξ 
                           
                         
                       
                      + 
                      
                        
                          
                            ( 
                            1 
                            − 
                            α 
                            
                              ) 
                              
                                − 
                                ξ 
                               
                             
                            − 
                            1 
                           
                          ξ 
                         
                       
                     
                    ] 
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  μ 
                  + 
                  s 
                  
                    [ 
                    
                      1 
                      − 
                      ln 
                       
                      ( 
                      1 
                      − 
                      α 
                      ) 
                     
                    ] 
                   
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0 
                  , 
                 
               
             
             
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)={\begin{cases}\mu +s\left[{\frac {(1-\alpha )^{-\xi }}{1-\xi }}+{\frac {(1-\alpha )^{-\xi }-1}{\xi }}\right]&{\text{if }}\xi \neq 0,\\\mu +s\left[1-\ln(1-\alpha )\right]&{\text{if }}\xi =0,\end{cases}}} 
   
 and the VaR is equal to[ 11] 
  
    
      
        
          VaR 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            { 
            
              
                
                  μ 
                  + 
                  s 
                  
                    
                      
                        ( 
                        1 
                        − 
                        α 
                        
                          ) 
                          
                            − 
                            ξ 
                           
                         
                        − 
                        1 
                       
                      ξ 
                     
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  μ 
                  − 
                  s 
                  ln 
                   
                  ( 
                  1 
                  − 
                  α 
                  ) 
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle \operatorname {VaR} _{\alpha }(L)={\begin{cases}\mu +s{\frac {(1-\alpha )^{-\xi }-1}{\xi }}&{\text{if }}\xi \neq 0,\\\mu -s\ln(1-\alpha )&{\text{if }}\xi =0.\end{cases}}} 
   
 Weibull distribution [ edit ] If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 Weibull distribution  with  p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    
                      k 
                      λ 
                     
                   
                  
                    
                      ( 
                      
                        
                          x 
                          λ 
                         
                       
                      ) 
                     
                    
                      k 
                      − 
                      1 
                     
                   
                  
                    e 
                    
                      − 
                      ( 
                      x 
                      
                        / 
                       
                      λ 
                      
                        ) 
                        
                          k 
                         
                       
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  ≥ 
                  0 
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    if  
                   
                  x 
                  < 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle f(x)={\begin{cases}{\frac {k}{\lambda }}\left({\frac {x}{\lambda }}\right)^{k-1}e^{-(x/\lambda )^{k}}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                  − 
                  
                    e 
                    
                      − 
                      ( 
                      x 
                      
                        / 
                       
                      λ 
                      
                        ) 
                        
                          k 
                         
                       
                     
                   
                 
                
                  
                    if  
                   
                  x 
                  ≥ 
                  0 
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    if  
                   
                  x 
                  < 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle F(x)={\begin{cases}1-e^{-(x/\lambda )^{k}}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            λ 
            
              1 
              − 
              α 
             
           
         
        Γ 
        
          ( 
          
            1 
            + 
            
              
                1 
                k 
               
             
            , 
            − 
            ln 
             
            ( 
            1 
            − 
            α 
            ) 
           
          ) 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {\lambda }{1-\alpha }}\Gamma \left(1+{\frac {1}{k}},-\ln(1-\alpha )\right)} 
   
 
  
    
      
        Γ 
        ( 
        s 
        , 
        x 
        ) 
       
     
    {\displaystyle \Gamma (s,x)} 
   
 upper incomplete gamma function .[ 11] 
[ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 GEV  with  p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    
                      1 
                      σ 
                     
                   
                  
                    
                      ( 
                      
                        1 
                        + 
                        ξ 
                        
                          
                            
                              x 
                              − 
                              μ 
                             
                            σ 
                           
                         
                       
                      ) 
                     
                    
                      − 
                      
                        
                          1 
                          ξ 
                         
                       
                      − 
                      1 
                     
                   
                  exp 
                   
                  
                    [ 
                    
                      − 
                      
                        
                          ( 
                          
                            1 
                            + 
                            ξ 
                            
                              
                                
                                  x 
                                  − 
                                  μ 
                                 
                                σ 
                               
                             
                           
                          ) 
                         
                        
                          − 
                          
                            1 
                           
                          
                            / 
                           
                          
                            ξ 
                           
                         
                       
                     
                    ] 
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  
                    
                      1 
                      σ 
                     
                   
                  
                    e 
                    
                      − 
                      
                        
                          
                            x 
                            − 
                            μ 
                           
                          σ 
                         
                       
                     
                   
                  
                    e 
                    
                      − 
                      
                        e 
                        
                          − 
                          
                            
                              
                                x 
                                − 
                                μ 
                               
                              σ 
                             
                           
                         
                       
                     
                   
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle f(x)={\begin{cases}{\frac {1}{\sigma }}\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{\frac {1}{\xi }}-1}\exp \left[-\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{1}/{\xi }}\right]&{\text{if }}\xi \neq 0,\\{\frac {1}{\sigma }}e^{-{\frac {x-\mu }{\sigma }}}e^{-e^{-{\frac {x-\mu }{\sigma }}}}&{\text{if }}\xi =0.\end{cases}}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  exp 
                   
                  
                    ( 
                    
                      − 
                      
                        
                          ( 
                          
                            1 
                            + 
                            ξ 
                            
                              
                                
                                  x 
                                  − 
                                  μ 
                                 
                                σ 
                               
                             
                           
                          ) 
                         
                        
                          − 
                          
                            1 
                           
                          
                            / 
                           
                          
                            ξ 
                           
                         
                       
                     
                    ) 
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  exp 
                   
                  
                    ( 
                    
                      − 
                      
                        e 
                        
                          − 
                          
                            
                              
                                x 
                                − 
                                μ 
                               
                              σ 
                             
                           
                         
                       
                     
                    ) 
                   
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle F(x)={\begin{cases}\exp \left(-\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{1}/{\xi }}\right)&{\text{if }}\xi \neq 0,\\\exp \left(-e^{-{\frac {x-\mu }{\sigma }}}\right)&{\text{if }}\xi =0.\end{cases}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        
          
            { 
            
              
                
                  − 
                  μ 
                  − 
                  
                    
                      σ 
                      
                        α 
                        ξ 
                       
                     
                   
                  
                    
                      [ 
                     
                   
                  Γ 
                  ( 
                  1 
                  − 
                  ξ 
                  , 
                  − 
                  ln 
                   
                  α 
                  ) 
                  − 
                  α 
                  
                    
                      ] 
                     
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  − 
                  μ 
                  − 
                  
                    
                      σ 
                      α 
                     
                   
                  
                    
                      [ 
                     
                   
                  
                    li 
                   
                  ( 
                  α 
                  ) 
                  − 
                  α 
                  ln 
                   
                  ( 
                  − 
                  ln 
                   
                  α 
                  ) 
                  
                    
                      ] 
                     
                   
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)={\begin{cases}-\mu -{\frac {\sigma }{\alpha \xi }}{\big [}\Gamma (1-\xi ,-\ln \alpha )-\alpha {\big ]}&{\text{if }}\xi \neq 0,\\-\mu -{\frac {\sigma }{\alpha }}{\big [}{\text{li}}(\alpha )-\alpha \ln(-\ln \alpha ){\big ]}&{\text{if }}\xi =0.\end{cases}}} 
   
 
  
    
      
        
          VaR 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        
          
            { 
            
              
                
                  − 
                  μ 
                  − 
                  
                    
                      σ 
                      ξ 
                     
                   
                  
                    [ 
                    
                      ( 
                      − 
                      ln 
                       
                      α 
                      
                        ) 
                        
                          − 
                          ξ 
                         
                       
                      − 
                      1 
                     
                    ] 
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  − 
                  μ 
                  + 
                  σ 
                  ln 
                   
                  ( 
                  − 
                  ln 
                   
                  α 
                  ) 
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle \operatorname {VaR} _{\alpha }(X)={\begin{cases}-\mu -{\frac {\sigma }{\xi }}\left[(-\ln \alpha )^{-\xi }-1\right]&{\text{if }}\xi \neq 0,\\-\mu +\sigma \ln(-\ln \alpha )&{\text{if }}\xi =0.\end{cases}}} 
   
 
  
    
      
        Γ 
        ( 
        s 
        , 
        x 
        ) 
       
     
    {\displaystyle \Gamma (s,x)} 
   
 upper incomplete gamma function , 
  
    
      
        
          l 
          i 
         
        ( 
        x 
        ) 
        = 
        ∫ 
        
          
            
              d 
              x 
             
            
              ln 
               
              x 
             
           
         
       
     
    {\displaystyle \mathrm {li} (x)=\int {\frac {dx}{\ln x}}} 
   
 logarithmic integral function .[ 12] 
If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 GEV , then the expected shortfall is equal to 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        
          
            { 
            
              
                
                  μ 
                  + 
                  
                    
                      σ 
                      
                        ( 
                        1 
                        − 
                        α 
                        ) 
                        ξ 
                       
                     
                   
                  
                    
                      [ 
                     
                   
                  γ 
                  ( 
                  1 
                  − 
                  ξ 
                  , 
                  − 
                  ln 
                   
                  α 
                  ) 
                  − 
                  ( 
                  1 
                  − 
                  α 
                  ) 
                  
                    
                      ] 
                     
                   
                 
                
                  
                    if  
                   
                  ξ 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  μ 
                  + 
                  
                    
                      σ 
                      
                        1 
                        − 
                        α 
                       
                     
                   
                  
                    
                      [ 
                     
                   
                  y 
                  − 
                  
                    li 
                   
                  ( 
                  α 
                  ) 
                  + 
                  α 
                  ln 
                   
                  ( 
                  − 
                  ln 
                   
                  α 
                  ) 
                  
                    
                      ] 
                     
                   
                 
                
                  
                    if  
                   
                  ξ 
                  = 
                  0. 
                 
               
             
             
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)={\begin{cases}\mu +{\frac {\sigma }{(1-\alpha )\xi }}{\bigl [}\gamma (1-\xi ,-\ln \alpha )-(1-\alpha ){\bigr ]}&{\text{if }}\xi \neq 0,\\\mu +{\frac {\sigma }{1-\alpha }}{\bigl [}y-{\text{li}}(\alpha )+\alpha \ln(-\ln \alpha ){\bigr ]}&{\text{if }}\xi =0.\end{cases}}} 
   
 
  
    
      
        γ 
        ( 
        s 
        , 
        x 
        ) 
       
     
    {\displaystyle \gamma (s,x)} 
   
 lower incomplete gamma function , 
  
    
      
        y 
       
     
    {\displaystyle y} 
   
 Euler-Mascheroni constant .[ 11] 
[ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 GHS distribution  with p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              2 
              σ 
             
           
         
        sech 
         
        
          ( 
          
            
              
                π 
                2 
               
             
            
              
                
                  x 
                  − 
                  μ 
                 
                σ 
               
             
           
          ) 
         
       
     
    {\displaystyle f(x)={\frac {1}{2\sigma }}\operatorname {sech} \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            2 
            π 
           
         
        arctan 
         
        
          [ 
          
            exp 
             
            
              ( 
              
                
                  
                    π 
                    2 
                   
                 
                
                  
                    
                      x 
                      − 
                      μ 
                     
                    σ 
                   
                 
               
              ) 
             
           
          ] 
         
       
     
    {\displaystyle F(x)={\frac {2}{\pi }}\arctan \left[\exp \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)\right]} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        μ 
        − 
        
          
            
              2 
              σ 
             
            π 
           
         
        ln 
         
        
          ( 
          
            tan 
             
            
              
                
                  π 
                  α 
                 
                2 
               
             
           
          ) 
         
        − 
        
          
            
              2 
              σ 
             
            
              
                π 
                
                  2 
                 
               
              α 
             
           
         
        i 
        
          [ 
          
            
              Li 
              
                2 
               
             
             
            
              ( 
              
                − 
                i 
                tan 
                 
                
                  
                    
                      π 
                      α 
                     
                    2 
                   
                 
               
              ) 
             
            − 
            
              Li 
              
                2 
               
             
             
            
              ( 
              
                i 
                tan 
                 
                
                  
                    
                      π 
                      α 
                     
                    2 
                   
                 
               
              ) 
             
           
          ] 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu -{\frac {2\sigma }{\pi }}\ln \left(\tan {\frac {\pi \alpha }{2}}\right)-{\frac {2\sigma }{\pi ^{2}\alpha }}i\left[\operatorname {Li} _{2}\left(-i\tan {\frac {\pi \alpha }{2}}\right)-\operatorname {Li} _{2}\left(i\tan {\frac {\pi \alpha }{2}}\right)\right]} 
   
 
  
    
      
        
          Li 
          
            2 
           
         
       
     
    {\displaystyle \operatorname {Li} _{2}} 
   
 dilogarithm  and 
  
    
      
        i 
        = 
        
          
            − 
            1 
           
         
       
     
    {\displaystyle i={\sqrt {-1}}} 
   
 imaginary unit .[ 12] 
[ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 Johnson's SU-distribution  with the c.d.f. 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        Φ 
        
          [ 
          
            γ 
            + 
            δ 
            
              sinh 
              
                − 
                1 
               
             
             
            
              ( 
              
                
                  
                    x 
                    − 
                    ξ 
                   
                  λ 
                 
               
              ) 
             
           
          ] 
         
       
     
    {\displaystyle F(x)=\Phi \left[\gamma +\delta \sinh ^{-1}\left({\frac {x-\xi }{\lambda }}\right)\right]} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        ξ 
        − 
        
          
            λ 
            
              2 
              α 
             
           
         
        
          [ 
          
            exp 
             
            
              ( 
              
                
                  
                    1 
                    − 
                    2 
                    γ 
                    δ 
                   
                  
                    2 
                    
                      δ 
                      
                        2 
                       
                     
                   
                 
               
              ) 
             
            Φ 
            
              ( 
              
                
                  Φ 
                  
                    − 
                    1 
                   
                 
                ( 
                α 
                ) 
                − 
                
                  
                    1 
                    δ 
                   
                 
               
              ) 
             
            − 
            exp 
             
            
              ( 
              
                
                  
                    1 
                    + 
                    2 
                    γ 
                    δ 
                   
                  
                    2 
                    
                      δ 
                      
                        2 
                       
                     
                   
                 
               
              ) 
             
            Φ 
            
              ( 
              
                
                  Φ 
                  
                    − 
                    1 
                   
                 
                ( 
                α 
                ) 
                + 
                
                  
                    1 
                    δ 
                   
                 
               
              ) 
             
           
          ] 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\xi -{\frac {\lambda }{2\alpha }}\left[\exp \left({\frac {1-2\gamma \delta }{2\delta ^{2}}}\right)\;\Phi \left(\Phi ^{-1}(\alpha )-{\frac {1}{\delta }}\right)-\exp \left({\frac {1+2\gamma \delta }{2\delta ^{2}}}\right)\;\Phi \left(\Phi ^{-1}(\alpha )+{\frac {1}{\delta }}\right)\right]} 
   
 
  
    
      
        Φ 
       
     
    {\displaystyle \Phi } 
   
 [ 13] 
Burr type XII distribution [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 Burr type XII distribution   the p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            
              c 
              k 
             
            β 
           
         
        
          
            ( 
            
              
                
                  x 
                  − 
                  γ 
                 
                β 
               
             
            ) 
           
          
            c 
            − 
            1 
           
         
        
          
            [ 
            
              1 
              + 
              
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        γ 
                       
                      β 
                     
                   
                  ) 
                 
                
                  c 
                 
               
             
            ] 
           
          
            − 
            k 
            − 
            1 
           
         
       
     
    {\displaystyle f(x)={\frac {ck}{\beta }}\left({\frac {x-\gamma }{\beta }}\right)^{c-1}\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k-1}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        1 
        − 
        
          
            [ 
            
              1 
              + 
              
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        γ 
                       
                      β 
                     
                   
                  ) 
                 
                
                  c 
                 
               
             
            ] 
           
          
            − 
            k 
           
         
       
     
    {\displaystyle F(x)=1-\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        γ 
        − 
        
          
            β 
            α 
           
         
        
          
            ( 
            
              ( 
              1 
              − 
              α 
              
                ) 
                
                  − 
                  1 
                  
                    / 
                   
                  k 
                 
               
              − 
              1 
             
            ) 
           
          
            1 
            
              / 
             
            c 
           
         
        
          [ 
          
            α 
            − 
            1 
            + 
            
              
                
                  2 
                 
               
              
                F 
                
                  1 
                 
               
             
            
              ( 
              
                
                  
                    1 
                    c 
                   
                 
                , 
                k 
                ; 
                1 
                + 
                
                  
                    1 
                    c 
                   
                 
                ; 
                1 
                − 
                ( 
                1 
                − 
                α 
                
                  ) 
                  
                    − 
                    1 
                    
                      / 
                     
                    k 
                   
                 
               
              ) 
             
           
          ] 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}\left((1-\alpha )^{-1/k}-1\right)^{1/c}\left[\alpha -1+{_{2}F_{1}}\left({\frac {1}{c}},k;1+{\frac {1}{c}};1-(1-\alpha )^{-1/k}\right)\right]} 
   
 
  
    
      
        
          
            2 
           
         
        
          F 
          
            1 
           
         
       
     
    {\displaystyle _{2}F_{1}} 
   
 hypergeometric function . Alternatively, 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        γ 
        − 
        
          
            β 
            α 
           
         
        
          
            
              c 
              k 
             
            
              c 
              + 
              1 
             
           
         
        
          
            ( 
            
              ( 
              1 
              − 
              α 
              
                ) 
                
                  − 
                  1 
                  
                    / 
                   
                  k 
                 
               
              − 
              1 
             
            ) 
           
          
            1 
            + 
            
              
                1 
                c 
               
             
           
         
        
          
            
              2 
             
           
          
            F 
            
              1 
             
           
         
        
          ( 
          
            1 
            + 
            
              
                1 
                c 
               
             
            , 
            k 
            + 
            1 
            ; 
            2 
            + 
            
              
                1 
                c 
               
             
            ; 
            1 
            − 
            ( 
            1 
            − 
            α 
            
              ) 
              
                − 
                1 
                
                  / 
                 
                k 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}{\frac {ck}{c+1}}\left((1-\alpha )^{-1/k}-1\right)^{1+{\frac {1}{c}}}{_{2}F_{1}}\left(1+{\frac {1}{c}},k+1;2+{\frac {1}{c}};1-(1-\alpha )^{-1/k}\right)} 
   
 [ 12] 
If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 Dagum distribution  with  p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            
              c 
              k 
             
            β 
           
         
        
          
            ( 
            
              
                
                  x 
                  − 
                  γ 
                 
                β 
               
             
            ) 
           
          
            c 
            k 
            − 
            1 
           
         
        
          
            [ 
            
              1 
              + 
              
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        γ 
                       
                      β 
                     
                   
                  ) 
                 
                
                  c 
                 
               
             
            ] 
           
          
            − 
            k 
            − 
            1 
           
         
       
     
    {\displaystyle f(x)={\frac {ck}{\beta }}\left({\frac {x-\gamma }{\beta }}\right)^{ck-1}\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k-1}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            [ 
            
              1 
              + 
              
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        γ 
                       
                      β 
                     
                   
                  ) 
                 
                
                  − 
                  c 
                 
               
             
            ] 
           
          
            − 
            k 
           
         
       
     
    {\displaystyle F(x)=\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{-c}\right]^{-k}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        − 
        γ 
        − 
        
          
            β 
            α 
           
         
        
          
            
              c 
              k 
             
            
              c 
              k 
              + 
              1 
             
           
         
        
          
            ( 
            
              
                α 
                
                  − 
                  1 
                  
                    / 
                   
                  k 
                 
               
              − 
              1 
             
            ) 
           
          
            − 
            k 
            − 
            
              
                1 
                c 
               
             
           
         
        
          
            
              2 
             
           
          
            F 
            
              1 
             
           
         
        
          ( 
          
            k 
            + 
            1 
            , 
            k 
            + 
            
              
                1 
                c 
               
             
            ; 
            k 
            + 
            1 
            + 
            
              
                1 
                c 
               
             
            ; 
            − 
            
              
                1 
                
                  
                    α 
                    
                      − 
                      1 
                      
                        / 
                       
                      k 
                     
                   
                  − 
                  1 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}{\frac {ck}{ck+1}}\left(\alpha ^{-1/k}-1\right)^{-k-{\frac {1}{c}}}{_{2}F_{1}}\left(k+1,k+{\frac {1}{c}};k+1+{\frac {1}{c}};-{\frac {1}{\alpha ^{-1/k}-1}}\right)} 
   
 
  
    
      
        
          
            2 
           
         
        
          F 
          
            1 
           
         
       
     
    {\displaystyle _{2}F_{1}} 
   
 hypergeometric function .[ 12] 
Lognormal distribution [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 lognormal distribution , i.e. the random variable 
  
    
      
        ln 
         
        ( 
        1 
        + 
        X 
        ) 
       
     
    {\displaystyle \ln(1+X)} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              
                
                  2 
                  π 
                 
               
              σ 
             
           
         
        
          e 
          
            − 
            
              
                
                  ( 
                  x 
                  − 
                  μ 
                  
                    ) 
                    
                      2 
                     
                   
                 
                
                  2 
                  
                    σ 
                    
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle f(x)={\frac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        1 
        − 
        exp 
         
        
          ( 
          
            μ 
            + 
            
              
                
                  σ 
                  
                    2 
                   
                 
                2 
               
             
           
          ) 
         
        
          
            
              Φ 
              
                ( 
                
                  
                    Φ 
                    
                      − 
                      1 
                     
                   
                  ( 
                  α 
                  ) 
                  − 
                  σ 
                 
                ) 
               
             
            α 
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=1-\exp \left(\mu +{\frac {\sigma ^{2}}{2}}\right){\frac {\Phi \left(\Phi ^{-1}(\alpha )-\sigma \right)}{\alpha }}} 
   
 
  
    
      
        Φ 
        ( 
        x 
        ) 
       
     
    {\displaystyle \Phi (x)} 
   
 
  
    
      
        
          Φ 
          
            − 
            1 
           
         
        ( 
        α 
        ) 
       
     
    {\displaystyle \Phi ^{-1}(\alpha )} 
   
 [ 14] 
Log-logistic distribution [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 log-logistic distribution , i.e. the random variable 
  
    
      
        ln 
         
        ( 
        1 
        + 
        X 
        ) 
       
     
    {\displaystyle \ln(1+X)} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            s 
           
         
        
          e 
          
            − 
            
              
                
                  x 
                  − 
                  μ 
                 
                s 
               
             
           
         
        
          
            ( 
            
              1 
              + 
              
                e 
                
                  − 
                  
                    
                      
                        x 
                        − 
                        μ 
                       
                      s 
                     
                   
                 
               
             
            ) 
           
          
            − 
            2 
           
         
       
     
    {\displaystyle f(x)={\frac {1}{s}}e^{-{\frac {x-\mu }{s}}}\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-2}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        1 
        − 
        
          
            
              e 
              
                μ 
               
             
            α 
           
         
        
          I 
          
            α 
           
         
        ( 
        1 
        + 
        s 
        , 
        1 
        − 
        s 
        ) 
        
          
            
              π 
              s 
             
            
              sin 
               
              π 
              s 
             
           
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=1-{\frac {e^{\mu }}{\alpha }}I_{\alpha }(1+s,1-s){\frac {\pi s}{\sin \pi s}}} 
   
 
  
    
      
        
          I 
          
            α 
           
         
       
     
    {\displaystyle I_{\alpha }} 
   
 regularized incomplete beta function , 
  
    
      
        
          I 
          
            α 
           
         
        ( 
        a 
        , 
        b 
        ) 
        = 
        
          
            
              
                
                  B 
                 
                
                  α 
                 
               
              ( 
              a 
              , 
              b 
              ) 
             
            
              
                B 
               
              ( 
              a 
              , 
              b 
              ) 
             
           
         
       
     
    {\displaystyle I_{\alpha }(a,b)={\frac {\mathrm {B} _{\alpha }(a,b)}{\mathrm {B} (a,b)}}} 
   
 
As the incomplete beta function is defined only for positive arguments, for a more generic case the expected shortfall can be expressed with the hypergeometric function : 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        1 
        − 
        
          
            
              
                e 
                
                  μ 
                 
               
              
                α 
                
                  s 
                 
               
             
            
              s 
              + 
              1 
             
           
         
        
          
            
              2 
             
           
          
            F 
            
              1 
             
           
         
        ( 
        s 
        , 
        s 
        + 
        1 
        ; 
        s 
        + 
        2 
        ; 
        α 
        ) 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=1-{\frac {e^{\mu }\alpha ^{s}}{s+1}}{_{2}F_{1}}(s,s+1;s+2;\alpha )} 
   
 [ 14] 
If the loss of a portfolio 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            
              
                
                  b 
                  a 
                 
               
              ( 
              x 
              
                / 
               
              a 
              
                ) 
                
                  b 
                  − 
                  1 
                 
               
             
            
              ( 
              1 
              + 
              ( 
              x 
              
                / 
               
              a 
              
                ) 
                
                  b 
                 
               
              
                ) 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle f(x)={\frac {{\frac {b}{a}}(x/a)^{b-1}}{(1+(x/a)^{b})^{2}}}} 
   
 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              1 
              + 
              ( 
              x 
              
                / 
               
              a 
              
                ) 
                
                  − 
                  b 
                 
               
             
           
         
       
     
    {\displaystyle F(x)={\frac {1}{1+(x/a)^{-b}}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        L 
        ) 
        = 
        
          
            a 
            
              1 
              − 
              α 
             
           
         
        
          [ 
          
            
              
                π 
                b 
               
             
            csc 
             
            
              ( 
              
                
                  π 
                  b 
                 
               
              ) 
             
            − 
            
              
                B 
               
              
                α 
               
             
            
              ( 
              
                
                  
                    1 
                    b 
                   
                 
                + 
                1 
                , 
                1 
                − 
                
                  
                    1 
                    b 
                   
                 
               
              ) 
             
           
          ] 
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {a}{1-\alpha }}\left[{\frac {\pi }{b}}\csc \left({\frac {\pi }{b}}\right)-\mathrm {B} _{\alpha }\left({\frac {1}{b}}+1,1-{\frac {1}{b}}\right)\right]} 
   
 
  
    
      
        
          B 
          
            α 
           
         
       
     
    {\displaystyle B_{\alpha }} 
   
 incomplete beta function .[ 11] 
Log-Laplace distribution [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 log-Laplace distribution , i.e. the random variable 
  
    
      
        ln 
         
        ( 
        1 
        + 
        X 
        ) 
       
     
    {\displaystyle \ln(1+X)} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              2 
              b 
             
           
         
        
          e 
          
            − 
            
              
                
                  
                    | 
                   
                  x 
                  − 
                  μ 
                  
                    | 
                   
                 
                b 
               
             
           
         
       
     
    {\displaystyle f(x)={\frac {1}{2b}}e^{-{\frac {|x-\mu |}{b}}}} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                  − 
                  
                    
                      
                        
                          e 
                          
                            μ 
                           
                         
                        ( 
                        2 
                        α 
                        
                          ) 
                          
                            b 
                           
                         
                       
                      
                        b 
                        + 
                        1 
                       
                     
                   
                 
                
                  
                    if  
                   
                  α 
                  ≤ 
                  0.5 
                  , 
                 
               
              
                
                  1 
                  − 
                  
                    
                      
                        
                          e 
                          
                            μ 
                           
                         
                        
                          2 
                          
                            − 
                            b 
                           
                         
                       
                      
                        α 
                        ( 
                        b 
                        − 
                        1 
                        ) 
                       
                     
                   
                  
                    [ 
                    
                      ( 
                      1 
                      − 
                      α 
                      
                        ) 
                        
                          ( 
                          1 
                          − 
                          b 
                          ) 
                         
                       
                      − 
                      1 
                     
                    ] 
                   
                 
                
                  
                    if  
                   
                  α 
                  > 
                  0.5. 
                 
               
             
             
         
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)={\begin{cases}1-{\frac {e^{\mu }(2\alpha )^{b}}{b+1}}&{\text{if }}\alpha \leq 0.5,\\1-{\frac {e^{\mu }2^{-b}}{\alpha (b-1)}}\left[(1-\alpha )^{(1-b)}-1\right]&{\text{if }}\alpha >0.5.\end{cases}}} 
   
 [ 14] [ edit ] If the payoff of a portfolio 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        ln 
         
        ( 
        1 
        + 
        X 
        ) 
       
     
    {\displaystyle \ln(1+X)} 
   
 GHS distribution  with p.d.f. 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              2 
              σ 
             
           
         
        sech 
         
        
          ( 
          
            
              
                π 
                2 
               
             
            
              
                
                  x 
                  − 
                  μ 
                 
                σ 
               
             
           
          ) 
         
       
     
    {\displaystyle f(x)={\frac {1}{2\sigma }}\operatorname {sech} \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)} 
   
 
  
    
      
        
          ES 
          
            α 
           
         
         
        ( 
        X 
        ) 
        = 
        1 
        − 
        
          
            1 
            
              α 
              ( 
              σ 
              + 
              
                π 
                
                  / 
                 
                2 
               
              ) 
             
           
         
        
          
            ( 
            
              tan 
               
              
                
                  
                    π 
                    α 
                   
                  2 
                 
               
              exp 
               
              
                
                  
                    π 
                    μ 
                   
                  
                    2 
                    σ 
                   
                 
               
             
            ) 
           
          
            2 
            σ 
            
              / 
             
            π 
           
         
        tan 
         
        
          
            
              π 
              α 
             
            2 
           
         
        
          
            
              2 
             
           
          
            F 
            
              1 
             
           
         
        
          ( 
          
            1 
            , 
            
              
                1 
                2 
               
             
            + 
            
              
                σ 
                π 
               
             
            ; 
            
              
                3 
                2 
               
             
            + 
            
              
                σ 
                π 
               
             
            ; 
            − 
            tan 
             
            
              
                ( 
                
                  
                    
                      π 
                      α 
                     
                    2 
                   
                 
                ) 
               
              
                2 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }(X)=1-{\frac {1}{\alpha (\sigma +{\pi /2})}}\left(\tan {\frac {\pi \alpha }{2}}\exp {\frac {\pi \mu }{2\sigma }}\right)^{2\sigma /\pi }\tan {\frac {\pi \alpha }{2}}{_{2}F_{1}}\left(1,{\frac {1}{2}}+{\frac {\sigma }{\pi }};{\frac {3}{2}}+{\frac {\sigma }{\pi }};-\tan \left({\frac {\pi \alpha }{2}}\right)^{2}\right),} 
   
 where 
  
    
      
        
          
            2 
           
         
        
          F 
          
            1 
           
         
       
     
    {\displaystyle _{2}F_{1}} 
   
 hypergeometric function .[ 14] 
Dynamic expected shortfall [ edit ] The conditional  version of the expected shortfall at the time t  is defined by
  
    
      
        
          ES 
          
            α 
           
          
            t 
           
         
         
        ( 
        X 
        ) 
        = 
        
          
            e 
            s 
            s 
            sup 
           
          
            Q 
            ∈ 
            
              
                
                  Q 
                 
               
              
                α 
               
              
                t 
               
             
           
         
         
        
          E 
          
            Q 
           
         
        [ 
        − 
        X 
        ∣ 
        
          
            
              F 
             
           
          
            t 
           
         
        ] 
       
     
    {\displaystyle \operatorname {ES} _{\alpha }^{t}(X)=\operatorname {ess\sup } _{Q\in {\mathcal {Q}}_{\alpha }^{t}}E^{Q}[-X\mid {\mathcal {F}}_{t}]} 
   
 where 
  
    
      
        
          
            
              Q 
             
           
          
            α 
           
          
            t 
           
         
        = 
        
          { 
          
            Q 
            = 
            P 
            
              | 
              
                
                  
                    
                      F 
                     
                   
                  
                    t 
                   
                 
               
             
            : 
            
              
                
                  d 
                  Q 
                 
                
                  d 
                  P 
                 
               
             
            ≤ 
            
              α 
              
                t 
               
              
                − 
                1 
               
             
            
               a.s. 
             
           
          } 
         
       
     
    {\displaystyle {\mathcal {Q}}_{\alpha }^{t}=\left\{Q=P\,\vert _{{\mathcal {F}}_{t}}:{\frac {dQ}{dP}}\leq \alpha _{t}^{-1}{\text{ a.s.}}\right\}} 
   
 [ 15] [ 16] 
This is not a time-consistent  risk measure. The time-consistent version is given by
  
    
      
        
          ρ 
          
            α 
           
          
            t 
           
         
        ( 
        X 
        ) 
        = 
        
          
            e 
            s 
            s 
            sup 
           
          
            Q 
            ∈ 
            
              
                
                  
                    
                      Q 
                     
                    ~ 
                   
                 
               
              
                α 
               
              
                t 
               
             
           
         
         
        
          E 
          
            Q 
           
         
        [ 
        − 
        X 
        ∣ 
        
          
            
              F 
             
           
          
            t 
           
         
        ] 
       
     
    {\displaystyle \rho _{\alpha }^{t}(X)=\operatorname {ess\sup } _{Q\in {\tilde {\mathcal {Q}}}_{\alpha }^{t}}E^{Q}[-X\mid {\mathcal {F}}_{t}]} 
   
 such that[ 17] 
  
    
      
        
          
            
              
                
                  Q 
                 
                ~ 
               
             
           
          
            α 
           
          
            t 
           
         
        = 
        
          { 
          
            Q 
            ≪ 
            P 
            : 
            E 
             
            
              [ 
              
                
                  
                    
                      d 
                      Q 
                     
                    
                      d 
                      P 
                     
                   
                 
                ∣ 
                
                  
                    
                      F 
                     
                   
                  
                    τ 
                    + 
                    1 
                   
                 
               
              ] 
             
            ≤ 
            
              α 
              
                t 
               
              
                − 
                1 
               
             
            E 
             
            
              [ 
              
                
                  
                    
                      d 
                      Q 
                     
                    
                      d 
                      P 
                     
                   
                 
                ∣ 
                
                  
                    
                      F 
                     
                   
                  
                    τ 
                   
                 
               
              ] 
             
            ∀ 
            τ 
            ≥ 
            t 
            
               a.s. 
             
           
          } 
         
        . 
       
     
    {\displaystyle {\tilde {\mathcal {Q}}}_{\alpha }^{t}=\left\{Q\ll P:\operatorname {E} \left[{\frac {dQ}{dP}}\mid {\mathcal {F}}_{\tau +1}\right]\leq \alpha _{t}^{-1}\operatorname {E} \left[{\frac {dQ}{dP}}\mid {\mathcal {F}}_{\tau }\right]\;\forall \tau \geq t{\text{ a.s.}}\right\}.} 
   
 Methods of statistical estimation of VaR and ES can be found in Embrechts et al.[ 18] [ 19] [ 20] 
^ Rockafellar, R. Tyrrell; Uryasev, Stanislav (2000). "Optimization of conditional value-at-risk"  (PDF) . Journal of Risk . 2  (3): 21– 42. doi :10.21314/JOR.2000.038 . S2CID  854622 . ^ Rockafellar, R. Tyrrell; Royset, Johannes (2010). "On Buffered Failure Probability in Design and Optimization of Structures"  (PDF) . Reliability Engineering and System Safety . 95  (5): 499– 510. doi :10.1016/j.ress.2010.01.001 . S2CID  1653873 . ^ Carlo Acerbi; Dirk Tasche (2002). "Expected Shortfall: a natural coherent alternative to Value at Risk"  (PDF) . Economic Notes . 31  (2): 379– 388. arXiv :cond-mat/0105191 doi :10.1111/1468-0300.00091 . S2CID  10772757 . Retrieved April 25,  2012 . ^ Föllmer, H.; Schied, A. (2008). "Convex and coherent risk measures"  (PDF) . Retrieved October 4,  2011 . ^ Patrick Cheridito; Tianhui Li  (2008). "Dual characterization of properties of risk measures on Orlicz hearts". Mathematics and Financial Economics . 2 : 2– 29. doi :10.1007/s11579-008-0013-7 . S2CID  121880657 . ^ "Average Value at Risk"  (PDF) . Archived from the original  (PDF)  on July 19, 2011. Retrieved February 2,  2011 .^ Julia L. Wirch; Mary R. Hardy. "Distortion Risk Measures: Coherence and Stochastic Dominance"  (PDF) . Archived from the original  (PDF)  on July 5, 2016. Retrieved March 10,  2012 . ^ Balbás, A.; Garrido, J.; Mayoral, S. (2008). "Properties of Distortion Risk Measures"  (PDF) . Methodology and Computing in Applied Probability . 11  (3): 385. doi :10.1007/s11009-008-9089-z . hdl :10016/14071 S2CID  53327887 . ^ Rockafellar, R. Tyrrell; Uryasev, Stanislav (2000). "Optimization of conditional value-at-risk"  (PDF) . Journal of Risk . 2  (3): 21– 42. doi :10.21314/JOR.2000.038 . S2CID  854622 . ^ a b c d   Khokhlov, Valentyn (2016). "Conditional Value-at-Risk for Elliptical Distributions". Evropský časopis Ekonomiky a Managementu . 2  (6): 70– 79. ^ a b c d e f g h i j   Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2018-11-27). "Calculating CVaR and bPOE for Common Probability Distributions With Application to Portfolio Optimization and Density Estimation". arXiv :1811.11301 q-fin.RM ]. ^ a b c d   Khokhlov, Valentyn (2018-06-21). "Conditional Value-at-Risk for Uncommon Distributions" . doi :10.2139/ssrn.3200629 S2CID  219371851 . SSRN  3200629 . ^ Stucchi, Patrizia (2011-05-31). "Moment-Based CVaR Estimation: Quasi-Closed Formulas" . doi :10.2139/ssrn.1855986 S2CID  124145569 . SSRN  1855986 . ^ a b c d   Khokhlov, Valentyn (2018-06-17). "Conditional Value-at-Risk for Log-Distributions". SSRN  3197929 . ^ Detlefsen, Kai; Scandolo, Giacomo (2005). "Conditional and dynamic convex risk measures"  (PDF) . Finance Stoch . 9  (4): 539– 561. CiteSeerX  10.1.1.453.4944 doi :10.1007/s00780-005-0159-6 . S2CID  10579202 . Retrieved October 11,  2011 . [dead link  ^ Acciaio, Beatrice; Penner, Irina (2011). "Dynamic convex risk measures"  (PDF) . Archived from the original  (PDF)  on September 2, 2011. Retrieved October 11,  2011 . ^ Cheridito, Patrick; Kupper, Michael (May 2010). "Composition of time-consistent dynamic monetary risk measures in discrete time"  (PDF) . International Journal of Theoretical and Applied Finance . Archived from the original  (PDF)  on July 19, 2011. Retrieved February 4,  2011 . ^ Embrechts P., Kluppelberg C. and Mikosch T., Modelling Extremal Events for Insurance and Finance. Springer (1997). 
^ Novak S.Y., Extreme value methods with applications to finance. Chapman & Hall/CRC Press (2011). ISBN  978-1-4398-3574-6  
^ Low, R.K.Y.; Alcock, J.; Faff, R.; Brailsford, T. (2013). "Canonical vine copulas in the context of modern portfolio management: Are they worth it?"  (PDF) . Journal of Banking & Finance . 37  (8): 3085– 3099. doi :10.1016/j.jbankfin.2013.02.036 . S2CID  154138333 .   
Rockafellar, Uryasev: Optimization of conditional Value-at-Risk, 2000. C. Acerbi and D. Tasche: On the Coherence of Expected Shortfall, 2002. Rockafellar, Uryasev: Conditional Value-at-Risk for general loss distributions, 2002. Acerbi: Spectral measures of risk, 2005 Phi-Alpha optimal portfolios and extreme risk management, Best of Wilmott, 2003 "Coherent measures of Risk ", Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath