Construction for vector bundles
In differential geometry , the determinant line bundle is a construction, which assigns every vector bundle over paracompact spaces a line bundle . Its name comes from using the determinant on their classifying spaces . Determinant line bundles naturally arise in four-dimensional spinᶜ structures and are therefore of central importance for Seiberg–Witten theory .
Let
X
{\displaystyle X}
be a paracompact space , then there is a bijection
[
X
,
BO
(
n
)
]
→
≅
Vect
R
n
(
X
)
,
[
f
]
↦
f
∗
γ
R
n
{\displaystyle [X,\operatorname {BO} (n)]\xrightarrow {\cong } \operatorname {Vect} _{\mathbb {R} }^{n}(X),[f]\mapsto f^{*}\gamma _{\mathbb {R} }^{n}}
with the real universal vector bundle
γ
R
n
{\displaystyle \gamma _{\mathbb {R} }^{n}}
.[ 1] The real determinant
det
:
O
(
n
)
→
O
(
1
)
{\displaystyle \det \colon \operatorname {O} (n)\rightarrow \operatorname {O} (1)}
is a group homomorphism and hence induces a continuous map
B
det
:
BO
(
n
)
→
BO
(
1
)
≅
R
P
∞
{\displaystyle {\mathcal {B}}\det \colon \operatorname {BO} (n)\rightarrow \operatorname {BO} (1)\cong \mathbb {R} P^{\infty }}
on the classifying space for O(n) . Hence there is a postcomposition:
det
:
Vect
R
n
(
X
)
≅
[
X
,
BO
(
n
)
]
→
B
det
∗
[
X
,
BO
(
1
)
]
≅
Vect
R
1
(
X
)
.
{\displaystyle \det \colon \operatorname {Vect} _{\mathbb {R} }^{n}(X)\cong [X,\operatorname {BO} (n)]\xrightarrow {{\mathcal {B}}\det _{*}} [X,\operatorname {BO} (1)]\cong \operatorname {Vect} _{\mathbb {R} }^{1}(X).}
Let
X
{\displaystyle X}
be a paracompact space , then there is a bijection
[
X
,
BU
(
n
)
]
→
≅
Vect
C
n
(
X
)
,
[
f
]
↦
f
∗
γ
C
n
{\displaystyle [X,\operatorname {BU} (n)]\xrightarrow {\cong } \operatorname {Vect} _{\mathbb {C} }^{n}(X),[f]\mapsto f^{*}\gamma _{\mathbb {C} }^{n}}
with the complex universal vector bundle
γ
C
n
{\displaystyle \gamma _{\mathbb {C} }^{n}}
.[ 1] The complex determinant
det
:
U
(
n
)
→
U
(
1
)
{\displaystyle \det \colon \operatorname {U} (n)\rightarrow \operatorname {U} (1)}
is a group homomorphism and hence induces a continuous map
B
det
:
BU
(
n
)
→
BU
(
1
)
≅
C
P
∞
{\displaystyle {\mathcal {B}}\det \colon \operatorname {BU} (n)\rightarrow \operatorname {BU} (1)\cong \mathbb {C} P^{\infty }}
on the classifying space for U(n) . Hence there is a postcomposition:
det
:
Vect
C
n
(
X
)
≅
[
X
,
BU
(
n
)
]
→
B
det
∗
[
X
,
BU
(
1
)
]
≅
Vect
C
1
(
X
)
.
{\displaystyle \det \colon \operatorname {Vect} _{\mathbb {C} }^{n}(X)\cong [X,\operatorname {BU} (n)]\xrightarrow {{\mathcal {B}}\det _{*}} [X,\operatorname {BU} (1)]\cong \operatorname {Vect} _{\mathbb {C} }^{1}(X).}
Alternatively, the determinant line bundle can be defined as the last non-trivial exterior product. Let
E
↠
X
{\displaystyle E\twoheadrightarrow X}
be a vector bundle, then:[ 2]
det
(
E
)
:=
Λ
rk
(
E
)
(
E
)
.
{\displaystyle \det(E):=\Lambda ^{\operatorname {rk} (E)}(E).}
The real deteminant line bundle preserves the first Stiefel–Whitney class , which for real line bundles over topological spaces with the homotopy type of a CW complex is a group isomorphism .[ 3] Since in this case the first Stiefel–Whitney class vanishes if and only if a real line bundle is orientable,[ 4] both conditions are then equivalent to a trivial determinant line bundle.[ 5]
The complex determinant line bundle preserves the first Chern class , which for complex line bundles over topological spaces with the homotopy type of a CW complex is a group isomorphism.[ 3]
The pullback bundle commutes with the determinant line bundle. For a continuous map
f
:
X
→
Y
{\displaystyle f\colon X\rightarrow Y}
between paracompact spaces
X
{\displaystyle X}
and
Y
{\displaystyle Y}
as well as a vector bundle
E
↠
Y
{\displaystyle E\twoheadrightarrow Y}
, one has:
det
(
f
∗
E
)
≅
f
∗
det
(
E
)
.
{\displaystyle \det(f^{*}E)\cong f^{*}\det(E).}
Proof: Assume
E
↠
Y
{\displaystyle E\twoheadrightarrow Y}
is a real vector bundle and let
g
:
Y
→
BO
(
n
)
{\displaystyle g\colon Y\rightarrow \operatorname {BO} (n)}
be its classifying map with
E
=
g
∗
γ
R
n
{\displaystyle E=g^{*}\gamma _{\mathbb {R} }^{n}}
, then:
det
(
f
∗
E
)
≅
det
(
f
∗
g
∗
γ
R
n
)
≅
det
(
(
g
∘
f
)
∗
γ
R
n
)
≅
(
B
det
∘
g
∘
f
)
∗
γ
R
1
≅
f
∗
(
B
det
∘
g
)
∗
γ
R
1
≅
f
∗
det
(
g
∗
γ
R
n
)
≅
f
∗
det
(
E
)
.
{\displaystyle \det(f^{*}E)\cong \det(f^{*}g^{*}\gamma _{\mathbb {R} }^{n})\cong \det((g\circ f)^{*}\gamma _{\mathbb {R} }^{n})\cong ({\mathcal {B}}\det \circ g\circ f)^{*}\gamma _{\mathbb {R} }^{1}\cong f^{*}({\mathcal {B}}\det \circ g)^{*}\gamma _{\mathbb {R} }^{1}\cong f^{*}\det(g^{*}\gamma _{\mathbb {R} }^{n})\cong f^{*}\det(E).}
For complex vector bundles, the proof is completely analogous.
For vector bundles
E
,
F
↠
X
{\displaystyle E,F\twoheadrightarrow X}
(with the same fields as fibers), one has:
det
(
E
⊗
F
)
≅
det
(
E
)
rk
(
F
)
⊗
det
(
F
)
rk
(
E
)
.
{\displaystyle \det(E\otimes F)\cong \det(E)^{\operatorname {rk} (F)}\otimes \det(F)^{\operatorname {rk} (E)}.}
Bott, Raoul ; Tu, Loring W. (1982). Differential Forms in Algebraic Topology . Springer . doi :10.1007/978-1-4757-3951-0 . ISBN 978-1-4757-3951-0 .
Freed, Daniel (1987-03-10). "On determinant line bundles" (PDF) .{{cite web }}
: CS1 maint: year (link )
Nicolaescu, Liviu I. (2000), Notes on Seiberg-Witten theory (PDF) , Graduate Studies in Mathematics , vol. 28, Providence, RI: American Mathematical Society, doi :10.1090/gsm/028 , ISBN 978-0-8218-2145-9 , MR 1787219
Hatcher, Allen (2003). "Vector Bundles & K-Theory" .
^ a b Hatcher 2017, Theorem 1.16.
^ Nicolaescu 2000, Exercise 1.1.4.
^ a b Hatcher 2017, Proposition 3.10.
^ Hatcher 2017, Proposition 3.11.
^ Bott & Tu 1982, Proposition 11.4.