This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In mathematics the Mott polynomials sn(x) are polynomials given by the exponential generating function:
Introduction
[edit]They were introduced by Nevill Francis Mott who applied them to a problem in the theory of electrons.[1]
Logic
[edit]Because the factor in the exponential has the power series
in terms of Catalan numbers , the coefficient in front of of the polynomial can be written as
- , according to the general formula for generalized Appell polynomials, where the sum is over all compositions of into positive odd integers. The empty product appearing for equals 1. Special values, where all contributing Catalan numbers equal 1, are
By differentiation the recurrence for the first derivative becomes
The first few of them are (sequence A137378 in the OEIS)
Sheffer sequence
[edit]The polynomials sn(x) form the associated Sheffer sequence for –2t/(1–t2)[2]
Generalized hypergeometric function
[edit]An explicit expression for them in terms of the generalized hypergeometric function 3F0:[3]
References
[edit]- ^ Mott, N. F. (1932). "The Polarisation of Electrons by Double Scattering". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 135 (827): 429–458 [442]. Bibcode:1932RSPSA.135..429M. doi:10.1098/rspa.1932.0044. ISSN 0950-1207. JSTOR 95868.
- ^ Roman, Steven (1984). The umbral calculus. Pure and Applied Mathematics. Vol. 111. London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers]. p. 130. ISBN 978-0-12-594380-2. MR 0741185. Reprinted by Dover, 2005.
- ^ Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz [in German]; Tricomi, Francesco G. (1955). Higher transcendental functions. Vol. III. New York-Toronto-London: McGraw-Hill Book Company, Inc. p. 251. MR 0066496.