| Naldaviricetes | |
|---|---|
| Virus classification | |
| (unranked): | Virus |
| Class: | Naldaviricetes |
| Subtaxa | |
|
Baculoviridae, Nudiviridae, Hytrosaviridae, Nimaviridae | |
Naldaviricetes is a class of large double-stranded DNA viruses that infect arthropods. These viruses share a set of homologous genes that encode per os infectivity factors (PIFs), which are essential for oral infection of insect hosts. The class currently includes four recognized families — Baculoviridae, , Nudiviridae, Hytrosaviridae, and Nimaviridae — three of which Baculoviridae, , Nudiviridae, and Hytrosaviridae) are grouped within the order Lefavirales. Naldaviricetes was formally established by the International Committee on Taxonomy of Viruses (ICTV) in 2021 to unify these families under a higher-rank taxon based on conserved genomic and structural features[1]. The name Naldaviricetes derives from "Nuclear Arthropod Large DNA Viruses" (NALDVs), a term historically used to describe these four virus families.[1][2]

General characteristics
[edit]Viruses in this class are enveloped, rod-shaped, large dsDNA viruses that replicate in the nuclei of infected cells. All members of Naldaviricetes share several diagnostic features:
- Conserved pif genes: pif0/p74, pif1–pif3, and pif5/odv-e56.
- Circular dsDNA genomes (≈ 80 – 300 kb) that replicate in the host cell nucleus.
- Enveloped, rod-shaped or ovoid nucleocapsids.
- Absence of vertical double-jelly-roll capsid proteins typical of Varidnaviria, indicating an independent evolutionary origin.
These shared traits, especially the PIF gene complement, distinguish Naldaviricetes from other arthropod-infecting large-DNA viruses such as Ascoviridae, Entomopoxvirinae, and Betairidovirinae, which lack pif homologs[1].

The pif genes
[edit]The pif genes encode a complex of envelope proteins that enable oral infectivity in insect midgut cells. They were first discovered in baculoviruses and later found in nudiviruses, hytrosaviruses, and nimaviruses.The conservation of pif genes across these families is considered the molecular signature of Naldaviricetes[1][3]. Homologs are also present in endogenous nudivirus-derived elements of braconid wasps (family Polydnaviriformidae), reflecting ancient gene capture events[4].
Families
[edit]Enveloped, rod-shaped viruses of insects with circular dsDNA genomes of 80–180 kb. They produce two virion phenotypes—budded virus (BV) for systemic spread and occlusion-derived virus (ODV) for oral transmission[5][6]. Baculoviruses are divided into four genera: Alphabaculovirus, Betabaculovirus, Gammabaculovirus, and Deltabaculovirus[6], and are transmitted orally and vertically from parent to offspring through infected eggs[7][8][9].
Viruses with ellipsoidal to rod-shaped virions, typically non-occluded but some produce occlusion bodies[10]. Their genomes (96–232 kb) encode ≈ 100–150 genes, including ~28 core genes shared with baculoviruses[11]. Most nudiviruses like members of Alpha-, Delta- and Gammanudiviruses are transmitted orally[12][13]; with Helicoverpa zea Nudivirus 2, as the only exception that is known to be transmitted sexually and vertically[14][15].
Hytrosaviruses are enveloped, non-occluded, non-icosahedral rod-shaped particles with rounded and/ or conical ends[16]. The members with genomes sequenced are Glossina pallidipes salivary gland hypertrophy virus (GpSGHV, infecting the tsetse fly) and Musca domestica salivary gland hypertrophy virus (MdSGHV, infecting housefly) while the sequence of the hytrosavirus infecting narcissus bulb fly is not yet published and remains unclassified. They are transmitted orally, vertically, mechanically, and transovarially[17][18][19][20][21].
Nimaviridae has only a single member called White spot syndrome virus (WSSV) that infects aquatic crustaceans. WSSV virions are enveloped, ellipsoid-to-bacilliform with a flagellum-like extension[22]. WSSV is transmitted orally or vertically[23][24].
Characteristics of the class Naldaviricetes
[edit]| Character | Baculoviridae | Nudiviridae | Hytrosaviridae | Nimaviridae |
| Morphology | Enveloped and rod shaped | Enveloped and rod shaped | Large, rod shaped and enveloped | Enveloped, ellipsoid to bacilliform with a flagellum-like extension |
| Virions | 1. OBs have ODVs and ODVs have one to many rod-shaped nucleocapsids.
2. BVs are single rod shaped nucleocapsids |
Bacilliform nucleocapsids | Non-icosahedral and rod-shaped particles with a tegument | Rod shaped particles with a tegument |
| Occlusion bodies | Present | Present in OrNV, PmNV, ToNV, TpNV | Absent | Absent |
| Nucleic acid | Circular, supercoiled dsDNA of 80-180 kbp | Circular, supercoiled dsDNA of 96-232 kbp | Circular, dsDNA of 124 kbp (MdSGHV) or 190 Kbp (GpSGHV) | Circular, dsDNA of 280-307 kbp |
| Transmission | Oral | Orally, sexual and vertical | Oral, vertical, mechanical and transovarial | Oral and Vertical |
| Tropism | Midgut for ODVs and Systemic for BVs | Midgut, Gonads, and Hepatopancreas | Salivary glands and gonads | Midgut, gills, lymphoid organ and connective tissues |
| Molecules involved in infection | PIFs in ODVs and GP64 in BVs | N/A | N/A | Pifs |
The order Lefavirales was created within Naldaviricetes to include the families Baculoviridae, Nudiviridae, and Hytrosaviridae. The name derives from "late expression factors (lef)", a group of baculoviral genes encoding the subunits of a DNA-directed RNA polymerase responsible for late-phase transcription. These genes—lef-4, lef-5, lef-8, lef-9, p47, and vlf-1—are conserved among lefaviral families but absent from Nimaviridae[1][25]
Evolution
[edit]Phylogenetic analyses of concatenated PIF, DNA polymerase, and p33 (sulfhydryl oxidase) sequences indicate that Naldaviricetes form a monophyletic group distinct from the Nucleocytoviricota (formerly NCLDVs)[1][26]. Network analyses suggest they may represent an ancient branch of the Varidnaviria-related dsDNA virus network, albeit lacking the canonical double-jelly-roll capsid protein[1][27]. Evidence of nudivirus-derived elements integrated into insect genomes points to deep co-evolution between these viruses and their arthropod hosts[28].
Binomial naming system
[edit]In 2023, the ICTV adopted a binomial species-naming format for all viruses in the order Lefavirales. Each species name consists of the genus name followed by an epithet derived from the host species (e.g., Alphabaculovirus aucalifornicae, Betanudivirus hezeae, Glossinavirus glopallidipedis)[1]. This reform standardized naming while retaining traditional virus abbreviations and common names.
Relationships to other taxa
[edit]While Naldaviricetes share certain ancestral traits with members of Varidnaviria, they lack hallmark major-capsid-protein genes of that realm[1][27]. Within arthropod-infecting dsDNA viruses, they are distinguished from Ascoviridae, Entomopoxvirinae, and Betairidovirinae by nuclear replication and possession of pif genes. Members of the genus Bracoviriform (family Polydnaviriformidae) also retain ancient nudivirus-derived pif homologs[4].
References
[edit]- ^ a b c d e f g h i van Oers, Monique M.; Herniou, Elisabeth A.; Jehle, Johannes A.; Krell, Peter J.; Abd-Alla, Adly M.M.; Ribeiro, Bergmann M.; Theilmann, David A.; Hu, Zhihong; Harrison, Robert L. (2023-06-14). "Developments in the classification and nomenclature of arthropod-infecting large DNA viruses that contain pif genes". Archives of Virology. 168 (7): 182. doi:10.1007/s00705-023-05793-8. ISSN 1432-8798. PMC 10271883. PMID 37322175.
- ^ Williams, Trevor; Bergoin, Max; van Oers, Monique M. (2017-07-01). "Diversity of large DNA viruses of invertebrates". Journal of Invertebrate Pathology. Invertebrate Viruses and the Food Chain. 147: 4–22. Bibcode:2017JInvP.147....4W. doi:10.1016/j.jip.2016.08.001. ISSN 0022-2011. PMID 27592378.
- ^ Boogaard, Bob; Van Oers, Monique; Van Lent, Jan (2018-07-17). "An Advanced View on Baculovirus per Os Infectivity Factors". Insects. 9 (3): 84. doi:10.3390/insects9030084. ISSN 2075-4450. PMC 6164829. PMID 30018247.
- ^ a b Bézier, Annie; Annaheim, Marc; Herbinière, Juline; Wetterwald, Christoph; Gyapay, Gabor; Bernard-Samain, Sylvie; Wincker, Patrick; Roditi, Isabel; Heller, Manfred; Belghazi, Maya; Pfister-Wilhem, Rita; Periquet, Georges; Dupuy, Catherine; Huguet, Elisabeth; Volkoff, Anne-Nathalie (2009-02-13). "Polydnaviruses of Braconid Wasps Derive from an Ancestral Nudivirus". Science. 323 (5916): 926–930. Bibcode:2009Sci...323..926B. doi:10.1126/science.1166788. PMID 19213916.
- ^ Harrison, Robert; Hoover, Kelli (2012-01-01), "Baculoviruses and Other Occluded Insect Viruses", Insect Pathology, Academic Press, pp. 73–131, doi:10.1016/b978-0-12-384984-7.00004-x, ISBN 978-0-12-384984-7, retrieved 2025-11-10
- ^ a b Blissard, Gary W.; Theilmann, David A. (2018-09-29). "Baculovirus Entry and Egress from Insect Cells". Annual Review of Virology. 5 (1): 113–139. doi:10.1146/annurev-virology-092917-043356. ISSN 2327-056X. PMID 30004832.
- ^ Harrison, Robert L.; Herniou, Elisabeth A.; Bézier, Annie; Jehle, Johannes A.; Burand, John P.; Theilmann, David A.; Krell, Peter J.; van Oers, Monique M.; Nakai, Madoka; ICTV Report Consortium (2020). "ICTV Virus Taxonomy Profile: Nudiviridae". Journal of General Virology. 101 (1): 3–4. doi:10.1099/jgv.0.001381. ISSN 1465-2099. PMC 7414434. PMID 31935180.
- ^ Kukan, Barbara (1999-09-01). "Vertical Transmission of Nucleopolyhedrovirus in Insects". Journal of Invertebrate Pathology. 74 (2): 103–111. Bibcode:1999JInvP..74..103K. doi:10.1006/jipa.1999.4873. ISSN 0022-2011.
- ^ Doane, Charles C. (1969-09-01). "Trans-ovum transmission of a nuclear-polyhedrosis virus in the gypsy moth and the inducement of virus susceptibility". Journal of Invertebrate Pathology. 14 (2): 199–210. Bibcode:1969JInvP..14..199D. doi:10.1016/0022-2011(69)90107-4. ISSN 0022-2011.
- ^ Petersen, Jirka M.; Bézier, Annie; Drezen, Jean-Michel; van Oers, Monique M. (2022-03-01). "The naked truth: An updated review on nudiviruses and their relationship to bracoviruses and baculoviruses". Journal of Invertebrate Pathology. 189 107718. Bibcode:2022JInvP.18907718P. doi:10.1016/j.jip.2022.107718. ISSN 0022-2011.
- ^ Bateman, Kelly S.; Kerr, Rose; Stentiford, Grant D.; Bean, Tim P.; Hooper, Chantelle; Van Eynde, Benigna; Delbare, Daan; Bojko, Jamie; Christiaens, Olivier; Taning, Clauvis N. T.; Smagghe, Guy; van Oers, Monique M.; van Aerle, Ronny (2021-08-26). "Identification and Full Characterisation of Two Novel Crustacean Infecting Members of the Family Nudiviridae Provides Support for Two Subfamilies". Viruses. 13 (9): 1694. doi:10.3390/v13091694. ISSN 1999-4915. PMC 8472649. PMID 34578276.
- ^ Bézier, Annie; Thézé, Julien; Gavory, Frederick; Gaillard, Julien; Poulain, Julie; Drezen, Jean-Michel; Herniou, Elisabeth A. (2015-02-20). "The Genome of the Nucleopolyhedrosis-Causing Virus from Tipula oleracea Sheds New Light on the Nudiviridae Family". Journal of Virology. 89 (6): 3008–3025. doi:10.1128/jvi.02884-14. PMID 25540386.
- ^ Palmer, William H.; Medd, Nathan C.; Beard, Philippa M.; Obbard, Darren J. (2018-06-04). "Isolation of a natural DNA virus of Drosophila melanogaster, and characterisation of host resistance and immune responses". PLOS Pathogens. 14 (6) e1007050. doi:10.1371/journal.ppat.1007050. ISSN 1553-7374. PMC 6002114. PMID 29864164.
- ^ Hamm, John J.; Carpenter, James E.; Styer, Eloise L. (1996-03-01). "Oviposition Day Effect on Incidence of Agonadal Progeny of Helicoverpa zea (Lepidoptera: Noctuidae) Infected with a Virus". Annals of the Entomological Society of America. 89 (2): 266–275. doi:10.1093/aesa/89.2.266. ISSN 1938-2901.
- ^ Burand, John P.; Rallis, Christopher P.; Tan, Weijia (2004-02-01). "Horizontal transmission of Hz-2V by virus infected Helicoverpa zea moths". Journal of Invertebrate Pathology. 85 (2): 128–131. Bibcode:2004JInvP..85..128B. doi:10.1016/j.jip.2004.01.004. ISSN 0022-2011. PMID 15050843.
- ^ Kariithi, Henry M.; Vlak, Just M.; Jehle, Johannes A.; Bergoin, Max; Boucias, Drion G.; Abd-Alla, Adly M. M.; ICTV Report Consortium (2019). "ICTV Virus Taxonomy Profile: Hytrosaviridae". Journal of General Virology. 100 (9): 1271–1272. doi:10.1099/jgv.0.001300. ISSN 1465-2099. PMID 31389783.
- ^ Lietze, Verena-U.; Sims, Kelly R.; Salem, Tamer Z.; Geden, Christopher J.; Boucias, Drion G. (2009-04-01). "Transmission of MdSGHV among adult house flies, Musca domestica (Diptera: Muscidae), occurs via oral secretions and excreta". Journal of Invertebrate Pathology. 101 (1): 49–55. Bibcode:2009JInvP.101...49L. doi:10.1016/j.jip.2009.02.007. ISSN 0022-2011. PMID 19254721.
- ^ Geden, Christopher J.; Lietze, Verena-Ulrike; Boucias, Drion G. (2008-01-01). "Seasonal Prevalence and Transmission of Salivary Gland Hypertrophy Virus of House Flies (Diptera: Muscidae)". Journal of Medical Entomology. 45 (1): 42–51. doi:10.1093/jmedent/45.1.42. ISSN 0022-2585. PMID 18283941.
- ^ Boucias, D. G.; Deng, F.; Hu, Z.; Garcia-Maruniak, A.; Lietze, V. -U. (2013-03-01). "Analysis of the structural proteins from the Musca domestica hytrosavirus with an emphasis on the major envelope protein". Journal of Invertebrate Pathology. Tse Tse Fly Symposium. 112: S44 – S52. Bibcode:2013JInvP.112S..44B. doi:10.1016/j.jip.2012.03.016. ISSN 0022-2011. PMID 22465629.
- ^ Boucias, Drion G.; Kariithi, Henry M.; Bourtzis, Kostas; Schneider, Daniela I.; Kelley, Karen; Miller, Wolfgang J.; Parker, Andrew G.; Abd-Alla, Adly M. M. (2013-04-22). "Transgenerational Transmission of the Glossina pallidipes Hytrosavirus Depends on the Presence of a Functional Symbiome". PLOS ONE. 8 (4) e61150. Bibcode:2013PLoSO...861150B. doi:10.1371/journal.pone.0061150. ISSN 1932-6203. PMC 3632566. PMID 23613801.
- ^ Abd-Alla, Adly M. M.; Parker, Andrew G.; Vreysen, Marc J. B.; Bergoin, Max (2011-08-30). "Tsetse Salivary Gland Hypertrophy Virus: Hope or Hindrance for Tsetse Control?". PLOS Neglected Tropical Diseases. 5 (8) e1220. doi:10.1371/journal.pntd.0001220. ISSN 1935-2735. PMC 3166039. PMID 21912708.
- ^ Wang, Han-Ching; Hirono, Ikuo; Maningas, Mary Beth Bacano; Somboonwiwat, Kunlaya; Stentiford, Grant; ICTV Report Consortium (2019). "ICTV Virus Taxonomy Profile: Nimaviridae". Journal of General Virology. 100 (7): 1053–1054. Bibcode:2019JGVir.100.1053W. doi:10.1099/jgv.0.001248. ISSN 1465-2099. PMID 30924764.
- ^ De Gryse, Gaëtan M. A.; Khuong, Thuong Van; Descamps, Benedicte; Van Den Broeck, Wim; Vanhove, Christian; Cornillie, Pieter; Sorgeloos, Patrick; Bossier, Peter; Nauwynck, Hans J. (2020-11-10). "The shrimp nephrocomplex serves as a major portal of pathogen entry and is involved in the molting process". Proceedings of the National Academy of Sciences. 117 (45): 28374–28383. Bibcode:2020PNAS..11728374D. doi:10.1073/pnas.2013518117. PMC 7668069. PMID 33097672.
- ^ Cf, Lo; Ch, Ho; Ch, Chen; Kf, Liu; Yl, Chiu; Py, Yeh; Se, Peng; Hc, Hsu; Hc, Liu; Cf, Chang; Ms, Su; Ch, Wang; Gh, Kou (1997-07-24). "Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs". Diseases of Aquatic Organisms. 30: 53–72. doi:10.3354/dao030053. ISSN 1616-1580.
- ^ Passarelli, Lorena A.; Guarino, Linda A. (2007). "Baculovirus Late and Very Late Gene Regulation". Current Drug Targets. 8 (10): 1103–1115. doi:10.2174/138945007782151324. PMID 17979670.
- ^ Kawato, Satoshi; Shitara, Aiko; Wang, Yuanyuan; Nozaki, Reiko; Kondo, Hidehiro; Hirono, Ikuo (2019-01-17). "Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Syndrome Virus". Journal of Virology. 93 (3): 10.1128/jvi.01144–18. doi:10.1128/jvi.01144-18. PMID 30404800.
- ^ a b Iranzo, Jaime; Krupovic, Mart; Koonin, Eugene V. (2016-08-02). "The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing". mBio. 7 (4): 10.1128/mbio.00978–16. Bibcode:2016mBio....778.16I. doi:10.1128/mbio.00978-16. PMC 4981718. PMID 27486193.
- ^ Herniou, Elisabeth A.; Huguet, Elisabeth; Thézé, Julien; Bézier, Annie; Periquet, Georges; Drezen, Jean-Michel (2013-09-19). "When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses". Philosophical Transactions of the Royal Society B: Biological Sciences. 368 (1626) 20130051. doi:10.1098/rstb.2013.0051. PMC 3758193. PMID 23938758.