This article relies largely or entirely on a single source. (August 2012) |

In computing, a virtual address space (VAS) is an area of contiguous virtual memory locations, called virtual addresses, which an operating system makes available to a process for executing instructions and storing data, and which it maps to the address space of physical addresses in a computer's hardware memory.[1] The range of virtual addresses usually starts at a low address and can extend to the highest address allowed by the computer's instruction set architecture and supported by the operating system's pointer size implementation, which can be 4 bytes for 32-bit or 8 bytes for 64-bit OS versions. This provides several benefits including security through process isolation, assuming each process is given a separate address space.
Example
[edit]- In the following description, the terminology used will be particular to the Windows NT operating system, but the concepts are applicable to other virtual memory operating systems.
When a new application on a 32-bit OS is executed, the process has a 4 GiB VAS: each one of the memory addresses (from 0 to 232 − 1) in that space can have a single byte as a value. Initially, none of them have values (- represents no value). Using or setting values in such a VAS would cause a memory exception.
0 4 GiB VAS |----------------------------------------------|
Then the application's executable file is mapped into the VAS. Addresses in the process VAS are mapped to bytes in the EXE file. The OS manages the mapping:
0 4 GiB VAS |---vvv----------------------------------------| mapping ||| file bytes app
The symbol v represents values from bytes in the mapped file. Required DLL files are then mapped (this includes custom libraries in addition to system libraries such as kernel32.dll and user32.dll):
0 4 GiB VAS |---vvv--------vvvvvv---vvvv-------------------| mapping ||| |||||| |||| file bytes app kernel user
The process then starts executing bytes in the EXE file. However, the only way the process can use or set - values in its VAS is to ask the OS to map them to bytes from a file. A common way to use VAS memory in this way is to map it to the page file. The page file is a single file, but multiple distinct sets of contiguous bytes can be mapped into a VAS:
0 4 GiB VAS |---vvv--------vvvvvv---vvvv---vv-----v----vvv-| mapping ||| |||||| |||| || | ||| file bytes app kernel user system_page_file
And different parts of the page file can map into the VAS of different processes:
0 4 GiB VAS |---vvvv-------vvvvvv---vvvv---vv-----v----vvv-| mapping |||| |||||| |||| || | ||| file bytes app1 app2 kernel user system_page_file mapping |||| |||||| |||| || | VAS 2 |--------vvvv--vvvvvv---vvvv-------vv----v-----|
On Microsoft Windows 32-bit, by default, only 2 GiB are made available to processes for their own use.[2] The other 2 GiB are used by the operating system. On later 32-bit editions of Microsoft Windows, it is possible to extend the user-mode virtual address space to 3 GiB while only 1 GiB is left for kernel-mode virtual address space by marking the programs as IMAGE_FILE_LARGE_ADDRESS_AWARE and enabling the /3GB switch in the boot.ini file.[3][4]
On Microsoft Windows 64-bit, in a process running an executable that was linked with /LARGEADDRESSAWARE:NO, the operating system artificially limits the user mode portion of the process's virtual address space to 2 GiB. This applies to both 32- and 64-bit executables.[5][6] Processes running executables that were linked with the /LARGEADDRESSAWARE:YES option, which is the default for 64-bit Visual Studio 2010 and later,[7] have access to more than 2 GiB of virtual address space: up to 4 GiB for 32-bit executables, up to 8 TiB for 64-bit executables in Windows through Windows 8, and up to 128 TiB for 64-bit executables in Windows 8.1 and later.[4][8]
Allocating memory via C's malloc establishes the page file as the backing store for any new virtual address space. However, a process can also explicitly map file bytes.
Linux
[edit]For x86, PowerPC, and ARM 32-bit CPUs, Linux allows splitting the user and kernel address ranges in different ways: 3G/1G user/kernel (default), 1G/3G user/kernel or 2G/2G user/kernel.[9]
See also
[edit]References
[edit]- ^ "What is an address space?". IBM. Retrieved May 5, 2024.
- ^ "Virtual Address Space". MSDN. Microsoft.
- ^ "LOADED_IMAGE structure". MSDN. Microsoft.
- ^ a b "4-Gigabyte Tuning: BCDEdit and Boot.ini". MSDN. Microsoft.
- ^ "/LARGEADDRESSAWARE (Handle Large Addresses)". MSDN. Microsoft.
- ^ "Virtual Address Space". MSDN. Microsoft.
- ^ "/LARGEADDRESSAWARE (Handle Large Addresses)". MSDN. Microsoft.
- ^ "/LARGEADDRESSAWARE (Handle Large Addresses)". MSDN. Microsoft.
- ^ "Linux kernel - x86: Memory split". git.kernel.org.
Further reading
[edit]- Richter, Jeffrey. Advanced Windows. Microsoft Press.