| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ru) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes: 96, 98-102, 104 (of which the first and last may in the future be found radioactive). Additionally, 27 synthetic radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru with a half-life of 371.8 days or 1.018 years, 103Ru, with a half-life of 39.245 days, and 97Ru with a half-life of 2.837 days.
The other known isotopes run from 87Ru to 120Ru, and most of these have half-lives that are less than five minutes, except 94Ru (51.8 minutes), 95Ru (1.607 hours), and 105Ru (4.44 hours).
The primary decay mode before the most abundant isotope, 102Ru, is electron capture to isotopes of technetium, and after beta emission to isotopes of rhodium. Double beta decay is the allowed mode for the two observationally stable isotopes: 96Ru and 104Ru.
Because of the volatility of ruthenium tetroxide (RuO
4), ruthenium isotopes with relatively short half-life are considered the next most hazardous airborne isotopes, after iodine-131, in case of release by a nuclear accident.[4][5][6] The two most important isotopes of ruthenium so released are those with the longest half-life: 103Ru 106Ru.[5]

List of isotopes
[edit]Nuclide [n 1] |
Z | N | Isotopic mass (Da)[7] [n 2][n 3] |
Half-life[1] [n 4] |
Decay mode[1] [n 5] |
Daughter isotope [n 6] |
Spin and parity[1] [n 7][n 4] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | Normal proportion[1] | Range of variation | |||||||||||||||||
85Ru | 44 | 41 | 84.96712(54)# | 1# ms [> 400 ns] |
3/2−# | ||||||||||||||
86Ru | 44 | 42 | 85.95731(43)# | 50# ms [> 400 ns] |
0+ | ||||||||||||||
87Ru | 44 | 43 | 86.95091(43)# | 50# ms [> 1.5 μs] |
1/2−# | ||||||||||||||
88Ru | 44 | 44 | 87.94166(32)# | 1.5(3) s | β+ (>96.4%) | 88Tc | 0+ | ||||||||||||
β+, p (<3.6%) | 87Mo | ||||||||||||||||||
89Ru | 44 | 45 | 88.937338(26) | 1.32(3) s | β+ (96.7%) | 89Tc | (9/2+) | ||||||||||||
β+, p (3.1%) | 88Mo | ||||||||||||||||||
90Ru | 44 | 46 | 89.9303444(40) | 11.7(9) s | β+ | 90Tc | 0+ | ||||||||||||
91Ru | 44 | 47 | 90.9267415(24) | 8.0(4) s | β+ | 91Tc | (9/2+) | ||||||||||||
91mRu[n 8] | −340(500) keV | 7.6(8) s | β+ (>99.9%) | 91Tc | (1/2−) | ||||||||||||||
β+, p (?%) | 90Mo | ||||||||||||||||||
92Ru | 44 | 48 | 91.9202344(29) | 3.65(5) min | β+ | 92Tc | 0+ | ||||||||||||
92mRu | 2833.9(18) keV | 100(8) ns | IT | 92Ru | (8+) | ||||||||||||||
93Ru | 44 | 49 | 92.9171044(22) | 59.7(6) s | β+ | 93Tc | (9/2)+ | ||||||||||||
93m1Ru | 734.40(10) keV | 10.8(3) s | β+ (78.0%) | 93Tc | (1/2)− | ||||||||||||||
IT (22.0%) | 93Ru | ||||||||||||||||||
β+, p (0.027%) | 92Mo | ||||||||||||||||||
93m2Ru | 2082.5(9) keV | 2.30(7) μs | IT | 93Ru | (21/2)+ | ||||||||||||||
94Ru | 44 | 50 | 93.9113429(34) | 51.8(6) min | β+ | 94Tc | 0+ | ||||||||||||
94mRu | 2644.1(4) keV | 67.5(28) μs | IT | 94Ru | 8+ | ||||||||||||||
95Ru | 44 | 51 | 94.910404(10) | 1.607(4) h | β+ | 95Tc | 5/2+ | ||||||||||||
96Ru | 44 | 52 | 95.90758891(18) | Observationally Stable[n 9] | 0+ | 0.0554(14) | |||||||||||||
97Ru | 44 | 53 | 96.9075458(30) | 2.8370(14) d | β+ | 97Tc | 5/2+ | ||||||||||||
98Ru | 44 | 54 | 97.9052867(69) | Stable | 0+ | 0.0187(3) | |||||||||||||
99Ru | 44 | 55 | 98.90593028(37) | Stable | 5/2+ | 0.1276(14) | |||||||||||||
100Ru | 44 | 56 | 99.90421046(37) | Stable | 0+ | 0.1260(7) | |||||||||||||
101Ru[n 10] | 44 | 57 | 100.90557309(44) | Stable | 5/2+ | 0.1706(2) | |||||||||||||
101mRu | 527.56(10) keV | 17.5(4) μs | IT | 101Ru | 11/2− | ||||||||||||||
102Ru[n 10] | 44 | 58 | 101.90434031(45) | Stable | 0+ | 0.3155(14) | |||||||||||||
103Ru[n 10] | 44 | 59 | 102.90631485(47) | 39.245(8) d | β− | 103Rh | 3/2+ | ||||||||||||
103mRu | 238.2(7) keV | 1.69(7) ms | IT | 103Ru | 11/2− | ||||||||||||||
104Ru[n 10] | 44 | 60 | 103.9054253(27) | Observationally Stable[n 11] | 0+ | 0.1862(27) | |||||||||||||
105Ru[n 10] | 44 | 61 | 104.9077455(27) | 4.439(11) h | β− | 105Rh | 3/2+ | ||||||||||||
105mRu | 20.606(14) keV | 340(15) ns | IT | 105Ru | 5/2+ | ||||||||||||||
106Ru[n 10] | 44 | 62 | 105.9073282(58) | 371.8(18) d | β− | 106Rh | 0+ | ||||||||||||
107Ru | 44 | 63 | 106.9099698(93) | 3.75(5) min | β− | 107Rh | (5/2)+ | ||||||||||||
108Ru | 44 | 64 | 107.9101858(93) | 4.55(5) min | β− | 108Rh | 0+ | ||||||||||||
109Ru | 44 | 65 | 108.9133237(96) | 34.4(2) s | β− | 109Rh | (5/2+) | ||||||||||||
109mRu | 96.14(15) keV | 680(30) ns | IT | 109Ru | (5/2−) | ||||||||||||||
110Ru | 44 | 66 | 109.9140385(96) | 12.04(17) s | β− | 110Rh | 0+ | ||||||||||||
111Ru | 44 | 67 | 110.917568(10) | 2.12(7) s | β− | 111Rh | 5/2+ | ||||||||||||
112Ru | 44 | 68 | 111.918807(10) | 1.75(7) s | β− | 112Rh | 0+ | ||||||||||||
113Ru | 44 | 69 | 112.922847(41) | 0.80(5) s | β− | 113Rh | (1/2+) | ||||||||||||
113mRu | 131(33) keV | 510(30) ms | β− (?%) | 113Rh | (7/2−) | ||||||||||||||
IT (?%) | 113Ru | ||||||||||||||||||
114Ru | 44 | 70 | 113.9246144(38) | 0.54(3) s | β− | 114Rh | 0+ | ||||||||||||
115Ru | 44 | 71 | 114.929033(27) | 318(19) ms | β− | 115Rh | (1/2+) | ||||||||||||
115mRu | 82(6) keV | 76(6) ms | β− (?%) | 115Rh | (7/2−) | ||||||||||||||
IT (?%) | 115Ru | ||||||||||||||||||
116Ru | 44 | 72 | 115.9312192(40) | 204(6) ms | β− | 116Rh | 0+ | ||||||||||||
117Ru | 44 | 73 | 116.93614(47) | 151(3) ms | β− | 117Rh | 3/2+# | ||||||||||||
117mRu | 185.0(4) keV | 2.49(6) μs | IT | 117Ru | 7/2−# | ||||||||||||||
118Ru | 44 | 74 | 117.93881(22)# | 99(3) ms | β− | 118Rh | 0+ | ||||||||||||
119Ru | 44 | 75 | 118.94409(32)# | 69.5(20) ms | β− | 119Rh | 3/2+# | ||||||||||||
119mRu | 227.1(7) keV | 384(22) ns | IT | 119Ru | |||||||||||||||
120Ru | 44 | 76 | 119.94662(43)# | 45(2) ms | β− | 120Rh | 0+ | ||||||||||||
121Ru | 44 | 77 | 120.95210(43)# | 29(2) ms | β− | 121Rh | 3/2+# | ||||||||||||
122Ru | 44 | 78 | 121.95515(54)# | 25(1) ms | β− | 122Rh | 0+ | ||||||||||||
123Ru | 44 | 79 | 122.96076(54)# | 19(2) ms | β− | 123Rh | 3/2+# | ||||||||||||
124Ru | 44 | 80 | 123.96394(64)# | 15(3) ms | β− | 124Rh | 0+ | ||||||||||||
125Ru | 44 | 81 | 124.96954(32)# | 12# ms [> 550 ns] |
3/2+# | ||||||||||||||
This table header & footer: |
- ^ mRu – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Order of ground state and isomer is uncertain.
- ^ Believed to undergo β+β+ decay to 96Mo with a half-life over 8×1019 years
- ^ a b c d e f Fission product
- ^ Believed to undergo β−β− decay to 104Pd
Alleged ruthenium-106 leak
[edit]In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source was either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It was estimated that for distances of the order of a few tens of kilometres, contamination levels may have exceeded the limits for non-dairy foodstuffs.[8]
Asteroid that ended the Cretaceous period
[edit]The ratios of the amounts of ruthenium isotopes were used to determine the age of the asteroid which exterminated the dinosaurs at the end of the Cretaceous period, and to show that it originated beyond Jupiter in the outer solar system.[9]
See also
[edit]Daughter products other than ruthenium
References
[edit]- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Ruthenium". CIAAW. 1983.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). Oxidation-enhanced emission of ruthenium from nuclear fuel. Journal of Environmental Radioactivity, 26(1), 63-70.
- ^ a b Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). Ruthenium behaviour in severe nuclear accident conditions. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.
- ^ Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code[dead link]. Nuclear Engineering and Design, 246, 157-162.
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ^ [1] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)
- ^ Dunham, Will (15 August 2024). "Asteroid that doomed the dinosaurs originated beyond Jupiter". The Globe and Mail. Retrieved 8 July 2025.
ruthenium shows distinct isotopic compositions between inner and outer solar system materials